Name:

FIRST SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2022

COMPUTER SCIENCE AND MATHEMATICS (DOUBLE MAIN)

GDMA1B01T: CALCULUS

Time: 2 Hours

Maximum Marks: 60

SECTION A: Answer the following questions. Each carries 2 marks. (Ceiling 20 Marks)

- 1. Find $\lim_{x\to 1} \sqrt{\frac{2x+14}{x^2+1}}$
- 2. Find a number δ such that $|f(x) L| < \epsilon$ whenever $0 < |x a| < \delta$ for $\lim_{x \to -2} (3x 2) = -8$; $\epsilon = 0.05$
- 3. Suppose that $y = 2x^3 x + 1$. Find Δx and Δy when x changes from 3 to 3.01
- 4. Find Δx and Δy when x changes from 2 to 2.02 for $y = \frac{1}{x}$.
- 5. Find the critical number(s) if any of the function $f(x) = 2x^2 + 4x$.
- 6. State the Second derivative Test for a function.
- 7. Find the horizontal and vertical asymptotes if any, of the graph of f.

- 8. Find the indefinite integral, $\int (x^3 2x^2 + x + 1) dx$
- 9. Given that $\int_1^3 f(x)dx = 4$ and $\int_3^6 f(x)dx = 2$. Evaluate the integrals $\int_3^1 2f(x)dx$ and $\int_6^1 f(x)dx$.
- 10. Evaluate the integral $\int_{1}^{2} (x^2 2x^2 + 1) dx$
- 11. Write the integral that gives the volume of a solid of revolution using the disk method.
- 12. Write an integral giving the arc length of the graph of the equation $y = 2x^2 + 1$ from P(-1, 1) to Q(2, 4). (Do not evaluate the integral.)

SECTION B: Answer the following questions. Each carries 5 marks (Ceiling 30 Marks)

- 13. Find the value of k that will make f(x) continuous where $f(x) = \begin{cases} x+2 & x \neq -2 \\ kx^2 & x = -2 \end{cases}$
- 14. Use the definition of the derivative to find the derivative of the function $f(x) = \frac{3}{2x+1}$
- 15. Find the intervals on which the function $f(x) = x^3 6x + 1$ is increasing or decreasing.

16. Find the extreme values of the function and explain with reasons.

(a)
$$f(x) = x^2, -1 < x < 2$$

(b)
$$g(x) = x^2, -1 \le x \le 2$$

17. Find the accumulated amount after 10 years on an investment of \$10,000 earning interest at the rate of 12% per year compounded continuously

18. Find the average value of $f(x) = 4 - x^2$ over the interval [-1,3].

19. Find the arc length of the graph from A to B.

SECTION C: Answer any 1 question. Each carries 10 marks.

20. The speed of a cyclist is measured at 4-sec intervals over a 32-sec time span and recorded in the following table.

Time(sec.)	0	4	8	12	16	20	24	28	32	
Speed(ft/sec)	2	4	6	10	12	14	10	8	6	

Find the approximate distance covered by the cyclist from t = 0 to t = 32 using

(a) Eight (n = 8) rectangles and choosing c_k to be the left endpoint of the kth subinterval.

(b) Eight (n = 8) rectangles and choosing c_k to be the right endpoint of the kth subinterval.

21. Find the area of the region S bounded by the graphs as shown below.

