(2 Pages)

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2024 (Regular/Improvement/Supplementary)

STATISTICS FMST4E13 - STATISTICAL DECISION THEORY & BAYESIAN ANALYSIS

Time: 3 Hours

Maximum Weightage: 30

Part A: Answer any *four* questions. Each carries *two* weightage.

- 1. Explain briefly the utility function.
- 2. Define loss function. Explain any two loss functions used in statistical decision theory.
- 3. What are conjugate priors? Discuss the use of such priors.
- 4. Explain the histogram approach of subjective determination of prior density.
- 5. Show that Bayes rule when it is unique, is admissible.
- 6. Prove that under squared error loss function mean of the posterior distribution is the Bayes estimator.
- 7. Write a note on empirical Bayes estimators.

$(4 \times 2 = 8 \text{ weightage})$

Part B: Answer any *four* questions. Each carries *three* weightage.

- 8. Let X have a Poisson distribution with mean θ . Let $A = [0,\infty)$, be the action space. The loss function is $(\theta, a) = (\theta a)^2$. Consider the decision rules of the form $\delta_c(x) = cx$. Assume $\pi(\theta) = e^{-\theta}$ is the prior density. Find $\rho(\pi, a)$ and Bayes action.
- 9. Discuss various steps in the construction of utility of money.
- 10. Describe ML –II approach to prior selection.
- 11. State minimax theorem and explain randomized strategies in game theory.
- 12. Explain what is meant by predictive inference. How it is handled in classical inference?
- 13. Formulate interval estimation and testing problem from a Bayesian point of view.
- 14. Let $X = (X_1, X_2, \dots, X_n)$ be a sample from Poisson (θ) and suppose $\theta \sim \text{Gamma}(\alpha, \beta)$. If X_{n+1} is a future observation, find predictive pmf of X_{n+1} given X_1, X_2, \dots, X_n .

 $(4 \times 3 = 12 \text{ weightage})$

(P.T.O.)

Part C: Answer any two questions. Each carries five weightage.

- 15. Let $X_{1,i}$ $X_{2,...}X_n$ be iid $N(\theta, 1)$. We want to estimate θ under $L(\theta, a) = (a \theta)^2$. Show that $\overline{X_n} = \frac{1}{n} \sum X_i$ is admissible.
- 16. What is the need of non-informative prior? When it will become improper? Discuss the derivation of non-informative invariant priors for location and scale families.
- 17. Let $X_{1,} X_{2,\dots} X_n$ be a sample from U(0, θ). Let θ has prior distribution $\pi(\theta) = \frac{\alpha \theta_0^{\alpha}}{\theta^{\alpha+1}}, \theta > \theta_0$ where θ_0 and α are known.
 - (a) Find posterior distribution of θ .
 - (b) Determine Bayes estimate of θ under squared error loss function.
- 18. Let X= (X_1, X_2, \dots, X_n) be random sample from $N(\theta, r)$, θ and precision $r = \frac{1}{\sigma^2}$ both unknown. If $\pi(\theta, r) \propto \frac{1}{r}$, find posterior density of X_{n+1} given X= (X_1, X_2, \dots, X_n) .

 $(2 \times 5 = 10 \text{ weightage})$