(3 Pages)

Name
Reg.No

FOURTH SEMESTER M. Sc. DEGREE EXAMINATION, APRIL 2024 (Regular/Improvement/Supplementary)

MATHEMATICS FMTH4E10 - DIFFERENTIAL GEOMETRY

Time: 3 Hours

Maximum Weightage: 30

Part A: Answer all questions. Each carries 1 weightage.

- 1. Find the integral curve through the point p = (1, 1) of the vector field $\mathbb{X}(p) = (p, X(p))$, where X(p) = (0, 1) on \mathbb{R}^2 .
- 2. Let $f: U \to \mathbb{R}$ be a smooth function and let $\alpha: I \to U$ be an integral curve of ∇f . Show that $\left(\frac{d}{dt}\right)(f \circ \alpha)(t) = \|\nabla f(\alpha(t))\|^2$ for all $t \in I$.
- 3. For what values of c is the level set $f^{-1}(c)$ an n-surface, where $f(x_1, ..., x_{n+1}) = x_1^2 + \dots + x_{n+1}^2$?
- 4. Prove that geodesics have constant speed.
- 5. Prove that the velocity vector field along a parameterized curve α in S is parallel if and only if α is geodesic.
- Prove that the covariant derivative X'(t) of a smooth vector field X is independent of the orientation.
- 7. Define differential of φ and find the formula for evaluating it.
- 8. Define chart and give an example.

$(8 \times 1 = 8 \text{ weightage})$

Part B: Answer any two questions from each unit. Each carries 2 weightage.

Unit 1

9. Define level set and graph of a function $f: U \to \mathbb{R}, U \subset \mathbb{R}^{n+1}$. Show that the graph of any function $f: \mathbb{R}^n \to \mathbb{R}$, is a level set for some function $F: \mathbb{R}^{n+1} \to \mathbb{R}$.

(**P.T.O.**)

- 10. Define a vector field on \mathbb{R}^{n+1} . Sketch the vector field $\mathbb{X}(p) = (p, X(p))$ on \mathbb{R}^2 where $X(x_1, x_2) = (-x_1, -x_2)$.
- 11. What do you mean by a vector at a point p tangent to a level set? Show that the gradient of f at $p \in f^{-1}(c)$ is orthogonal to all vectors tangent to $f^{-1}(c)$.

Unit 2

- 12. Show that the Weingarten map of an n-surface S at a point p in S is self-adjoint.
- 13. Let *C* be a plane curve oriented by the unit normal vector field \mathbb{N} . Let $\alpha: I \to C$ be a unit speed local parameterization of *C*. For $t \in I$, $\mathbb{T}(t) = \alpha(t)$, show that $\dot{\mathbb{T}} = (\kappa \circ \alpha)(\mathbb{N} \circ \alpha)$ and $(\mathbb{N} \circ \alpha) = -(\kappa \circ \alpha)\mathbb{T}$.
- 14. Let *C* be a connected oriented plane curve and let $\beta: I \to C$ be a unit speed global parameterization of *C*. Then show that β is either one to one or periodic. Show further that β is periodic if and only if *C* is compact.

Unit 3

- 15. Let V be a finite dimensional vector space with dot product and let $L: V \rightarrow V$ be a selfdisjoint linear transformation on V. Then prove that there exists an orthonormal basis for V consisting of eigenvectors of L.
- 16. Find the Gaussian curvature $K: S \to \mathbb{R}$, where S is the ellipsoid $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2} = 1$, (*a*, *b* and *c* all $\neq 0$).
- 17. Show for a parameterized *n*-surface $\varphi: U \to \mathbb{R}^{n+1}$ in \mathbb{R}^{n+1} and for $p \in U$, there exists an open set $U_1 \subset U$ about *p* such that $\varphi(U_1)$ is an *n*-surface in \mathbb{R}^{n+1} .

$(6 \times 2 = 12 \text{ weightage})$

Part C: Answer any two questions. Each carries 5 weightage.

18. (a) Let S be an n-surface in Rⁿ⁺¹, S = f⁻¹(c), where f: U → R is such that ∇f(q) ≠ 0 for all q ∈ S. Suppose g: U → R is a smooth function and p ∈ S is an extreme point of g on S. Prove that there exists a real number λ such that ∇g(p) = λ∇f(p).

(b) What do you mean by an oriented n-surface S in \mathbb{R}^{n+1} ? Show that on a connected n-surface S in \mathbb{R}^{n+1} there exists always exactly two orientations.

- 19. Let *S* be a compact connected oriented n-surface in \mathbb{R}^{n+1} exhibited as a level set $f^{-1}(c)$ of a smooth function $f: \mathbb{R}^{n+1} \to \mathbb{R}$ with $\nabla f(p) \neq 0$ for all $p \in S$. Then show that the Gauss map maps S onto the unit sphere S^n .
- 20. Let *S* be an n-surface in \mathbb{R}^{n+1} , let $p \in S$ and let $\mathbb{V} \in S_p$. Then prove there exists an open interval *I* containing 0 and a geodesic $\alpha: I \to S$ such that:
 - (i) $\alpha(0) = p$ and $\dot{\alpha}(0) = v$.
 - (ii) If $\beta: \hat{I} \to S$ is any other geodesic in S with $\beta(0) = p$ and $\dot{\beta}(0) = v$ then $\hat{I} \subset I$ and $\beta(t) = \alpha(t)$ for all $t \in \hat{I}$.
- 21. (a) Let S be a compact oriented *n*-surface in \mathbb{R}^{n+1} . Prove that there exists a point p on S such that the second fundamental form of S at p is definite.
 - (b) State and prove the Inverse function theorem for n-surfaces.

 $(2 \times 5 = 10 \text{ weightage})$