Time: 3 Hours

Name	
Reg. No.	

FOURTH SEMESTER M. Sc. DEGREE EXAMINATION, APRIL 2024

(Regular/Improvement/Supplementary)

MATHEMATICS FMTH4E08 - ALGEBRAIC TOPOLOGY

Maximum Weightage: 30

Part A: Answer all questions. Each carries 1 weightage.

- 1. Define a geometric complex with an example.
- 2. Let $S = \{(1,3,7), (2,7,6.5), (0,4,7)\}$. Determine whether S is geometrically independent.
- 3. Define a k-simplex. What are the barycentric coordinates of the point (5,3) determined by geometrically the independent set $\{(1,7), (3,0), (9,3)\}$?
- 4. Let K be an oriented simplicial complex K. Define the chain group $C_p(K)$.
- 5. Let K be the closure of a 2-simplex $\langle a_0 a_1 a_2 \rangle$ with orientation induced by the ordering $a_0 < a_1 < a_2$. Prove that $Z_0(K)$ is isomorphic to the group $\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$.
- 6. State the Euler-Poincaré Theorem.
- 7. Prove that any triangulation of S^2 must have at least four vertices, at least six 1-simplexes, and at least four 2-simplexes.
- 8. Let X be a topological space and let $x_0 \in X$. Define the fundamental group $\pi_1(X, x_0)$.

 $(8 \times 1 = 8 \text{ weightage})$

Part B: Answer any two questions from each unit. Each carries 2 weightage.

Unit 1

- 9. Prove that a set of k + 1 points in \mathbb{R}^n is geometrically independent if and only if no p + 1 of the points lie in a hyperplane of dimension less than or equal to p 1.
- 10. Prove that a set $A = \{a_0, a_1, \ldots, a_k\}$ of points in \mathbb{R}^n is geometrically independent if and only if the set of vectors $\{a_1 a_0, \ldots, a_k a_0\}$ is linearly independent.
- 11. Let X be a topological space. Define a triangulation of X. Prove that every simplex is a convex set.

Unit 2

- 12. If K is an oriented complex, then prove that $B_p(K) \subset Z_p(K)$ for each integer p such that $0 \le p \le n$, where n is the dimension of K.
- 13. If S is a simple polyhedron with V vertices, E edges, and F faces, then prove that V E + F = 2.
- 14. Prove that the *n*-sphere S^n is not contractible for any $n \ge 0$.

Unit 3

- 15. Let X be a topological space. Prove that the equivalence of paths is an equivalence relation on the set of paths in a space X.
- 16. Prove that the fundamental group $\pi_1(S^1)$ is isomorphic to the group \mathbb{Z} of integers under addition.
- 17. Give an example of a simply connected space that is not contractible.

 $(6 \ge 2 = 12 \text{ weightage})$

(P.T.O.)

Part C: Answer any two questions. Each carries 5 weightage.

- 18. (a) If $\sigma : I \to S^1$ is a path in S^1 with initial point 1, then prove that there is a unique covering path $\tilde{\sigma} : I \to \mathbb{R}$ with initial point 0.
 - (b) If K is an oriented complex and $p \ge 2$, then prove that the composition $\partial \partial : C_p(K) \to C_{p-2}(K)$ in the diagram

$$C_p(K) \xrightarrow{\partial} C_{p-1}(K) \xrightarrow{\partial} C_{p-2}(K)$$

is the trivial homomorphism.

- 19. (a) Let K be a geometric complex with two orientations, and let K_1, K_2 denote the resulting oriented geometric complexes. Then prove that the homology groups $H_p(K_1)$ and $H_p(K_2)$ are isomorphic for each dimension p.
 - (b) Let |K| and |L| be polyhedra with triangulations K and L respectively and $f : |K| \to |L|$ a continuous function. Prove that there is a barycentric subdivision $K^{(k)}$ of K and a continuous function $g : |K| \to |L|$ such that (a) g is a simplicial map from $K^{(k)}$ into L, and (b) g is homotopic to f.
- 20. (a) Prove that there is a vector field on $S^n, n \ge 1$, if and only if n is odd.
 - (b) If two continuous maps $f, g: S^n \to S^n$ are homotopic, then prove that they have the same degree.
- 21. (a) Let K be an oriented complex, σ^p an oriented p-simplex of K and $\sigma^{p-2}a(p-2)$ -face of σ^p . Then prove that

$$\sum \left[\sigma^{p}, \sigma^{p-1}\right] \left[\sigma^{p-1}, \sigma^{p-2}\right] = 0, \quad \sigma^{p-1} \in K$$

(b) For any complex K prove that $\lim_{s\to\infty}$ mesh $K^{(s)}=0$

 $(2 \ge 5 = 10$ weightage)