(2 Pages)

Name..... Reg.No.....

FOURTH SEMESTER M. Sc. DEGREE EXAMINATION, APRIL 2022 (Regular/Improvement/Supplementary)

MATHEMATICS FMTH4E10 - DIFFERENTIAL GEOMETRY

Time: 3 Hours

Maximum Weightage: 30

Part A: Answer all questions. Each carries one weightage.

- 1. Express the graph of the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x_1, x_2) = x_1 x_2$ as the level set of some function $F: \mathbb{R}^3 \to \mathbb{R}$.
- 2. Find and sketch the gradient field of the function $f(x_1, x_2) = x_1^2 + x_2^2$.
- 3. Show that the set S of all unit vectors at all points of R^2 forms a 3-surface in R^4 .
- 4. Find the speed of the parametrized curve $\alpha(t) = (t, t^2)$.
- 5. Compute $\nabla_{\mathbf{v}} f$ where $f(x_1, x_2) = 2x_1^2 + 3x_2^2$ and $\mathbf{v} = (1, 0, 2, 1)$.
- 6. Find the arclength of the parametrized curve $\alpha(t) = (\cos 3t, \sin 3t, 4t), I = [-1,1].$
- 7. Define the second fundamental form of an oriented n-surface.
- 8. Let $\phi: U_1 \to U_2$ and $\varphi: U_2 \to R^k$ be smooth, where $U_1 \subset R^n$ and $U_2 \subset R^m$. Verify the Chain rule $d(\varphi o \phi) = d\varphi o d\phi$.

$(8 \times 1 = 8 \text{ weightage})$

Part B: Answer any *two* questions from each unit. Each carries *two* weightage Unit 1

9. Find the integral curve through p = (a, b) of the vector field $X(x_1, x_2) = (x_1, x_2, -x_2, x_1)$.

10. Let S be a n-surface in Rⁿ⁺¹, S = f⁻¹(c) where f: U → R is such that ∇f(q) ≠ 0 for all q ∈ S. Suppose g: U → R is a smooth function and p ∈ S is an extreme point of g on S, then prove that there exists a real number λ such that ∇g(p) = λ∇f(p).

11. Let $S \subset \mathbb{R}^{n+1}$ be a connected n-surface in \mathbb{R}^{n+1} . Prove that there exist on S exactly two smooth unit normal vector fields N_1 and N_2 , and that $N_2(p) = -N_2(p)$ for all $p \in S$.

Unit 2

12. Let **X** and **Y** be smooth vector fields tangent to the n-surface S along the parametrized curve $\alpha: I \to R^{n+1}$. Verify that $(X, Y)' = X' \cdot Y + X \cdot Y'$.

(P.T.O.)

- 13. Show that the Weingarten map at each point p of an oriented n-surface in R^{n+1} is self adjoint.
- 14. Prove that the curvature of the circle $f^{-1}(r^2)$, where $f(x_1, x_2) = (x_1 - a)^2 + (x_2 - b)^2$ oriented by the outward normal $\frac{\nabla f}{||\nabla f||}$ is $\frac{-1}{r}$.

Unit 3

- 15. Prove that on each compact oriented n-surface S in R^{n+1} , there exists a point p such that the second fundamental form of at p is definite.
- 16. Show that the normal curvature of the sphere $x_1^2 + x_2^2 + \dots + x_{n+1}^2 = r^2 (N = \frac{-\nabla f}{||\nabla f||})$ at any point *p* in any direction is the constant $\frac{1}{r}$.
- 17. Let S be a compact, connected oriented n-surface in \mathbb{R}^{n+1} whose Gauss Kronecker curvature is nowhere zero. Prove that the Gauss map $N: S \to S^n$ is a diffeomorphism.

$(6 \times 2 = 12 \text{ weightage})$

Part C: Answer any two questions. Each carries 5 weightage.

18. a) Let S be a compact connected oriented n-surface in \mathbb{R}^{n+1} exhibited as a level set $f^{-1}(c)$ of a smooth function $f:\mathbb{R}^{n+1} \to \mathbb{R}$ with $\nabla f(p) \neq 0$ for all $p \in S$. Prove that the Gauss map maps S onto the unit sphere S^n .

b) Find the spherical image of the hyperboloid $x_1^2 - x_2^2 - x_3^2 = 4, x_1 > 0$ oriented by $N = \frac{\nabla f}{||\nabla f||}$ where $f(x_1, x_2, x_3) = x_1^2 - x_2^2 - x_3^2$.

19. a) Let S be an n-surface in \mathbb{R}^{n+1} , let $p \in S$ and $v \in S_P$. Then prove that there exists a maximal geodesic in S passing through p with initial velocity v.

b) Prove that for each $a, b, c, d \in R$, the parametrised curve in R^3 defined by

 $\alpha(t) = (\sin at + b, ct + d, ct + d)$ is a geodesic in the cylinder $x_1^2 + x_2^2 = 1$ in \mathbb{R}^3 .

20. a) Let *C* be a connected oriented plane curve and let $\beta: I \to C$ be a unit speedparametrization of *C*. Prove that β is either one one or periodic.

b) Let *C* be the circle $f^{-1}(r^2)$ where $f(x_1, x_2) = (x_1 - a)^2 + (x_2 - b)^2$ oriented by outward normal. Find a global parametrization of *C*.

a) Let *S* be an n-surface in \mathbb{R}^{n+1} and let $f: S \to \mathbb{R}^k$. Then prove that f is smooth if and only $f \circ \varphi: U \to \mathbb{R}^k$ is smooth for each local parametrization $\varphi: U \to S$.

b) State and prove the inverse function theorem for n-surfaces.

 $(2 \times 5 = 10 \text{ weightage})$