(2 Pages)

Name..... Reg.No.....

FOURTH SEMESTER M. Sc. DEGREE EXAMINATION, APRIL 2022 (Regular/Improvement/Supplementary)

MATHEMATICS FMTH4E08 - ALGEBRAIC TOPOLOGY

Time: 3 Hours

Maximum Weightage: 30

Part A: Answer all questions. Each carries one weightage.

- 1. Show that the barycentric coordinates of each point in a simplex are unique.
- 2. Define a *k*-simplex. Give an example of a 2-simplex.
- 3. Prove that the diameter of a simplex of positive dimension is the length of its longest 1-face.
- 4. Define the fundamental group of a topological space.
- 5. How many faces does an n-simplex have?
- 6. Define a chain mapping.
- 7. Give two examples of spaces with trivial fundamental group.
- 8. Define a contractible space. Give an example of a contractible space.

 $(8 \times 1 = 8 \text{ weightage})$

Part B: Answer any two questions from each unit. Each carries two weightage

Unit 1

9. Let *K* be an oriented complex, σ^p an oriented *p*-simplex of *K* and σ^{p-2} a (p-2) face of σ^p . Then prove that

 $\sum [\sigma^{p}, \sigma^{p-1}][\sigma^{p-1}, \sigma^{p-2}] = 0 \text{ for all } \sigma^{p-1}.$

- 10. Let *K* be a geometric complex with two orientations, and let K_1 , K_2 denote the resulting oriented geometric complexes. Then prove that the homology groups $H_p(K_1)$ and $H_p(K_2)$ are isomorphic for each dimension *p*.
- 11. Suppose that K_1 and K_2 are two triangulations of the same polyhedron. Are the chain groups $C_p(K_1)$ and $C_p(K_2)$ isomorphic? Explain.

Unit 2

- 12. State and prove the Brouwer Fixed Point Theorem.
- 13. Prove that there is a vector field on S^n , $n \ge 1$, if and only if *n* is odd.
- 14. Define mesh of a complex. For any complex *K*, prove that $\lim_{s\to\infty} \operatorname{mesh}(K^s) = 0.$

Unit 3

- 15. Prove that the fundamental group of S^1 is isomorphic to the additive group of integers.
- 16. If *A* is a deformation retract of a space *X* and x_0 is a point of *A*, then prove that $\pi_1(X, x_0)$ is isomorphic to $\pi_1(A, x_0)$.
- 17. Let *X* and *Y* be spaces with points x_o in *X* and y_o in *Y*. Then prove that $\pi_l(X \times Y, (x_0, y_0)) \cong \pi_l(X, x_o) \oplus \pi_l(Y, y_0)$.

$(6 \times 2 = 12 \text{ weightage})$

Part C: Answer any two questions. Each carries five weightage.

18. (a) Let *K* be a complex with *r* combinatorial components. Then prove that $H_0(K)$ is isomorphic to the direct sum of *r* copies of the group \mathbb{Z} of integers.

(b) If S is a simple polyhedron with V vertices, E edges, and F faces, then prove that V - E + F = 2.

- (c) State and prove the Continuity Lemma.
- 19. (a) Prove that a set of k + 1 points in \mathbb{R}^n is geometrically independent if and only if no p + 1 of the points lie in a hyperplane of dimension less than or equal to p 1.

(b) Let *K* be a 2-pseudomanifold with α_0 vertices, α_1 1-simplexes, and α_2 2-simplexes. Then prove that

(i)
$$3\alpha_2 = 2\alpha_1$$

(ii)
$$\alpha_1 = 3(\alpha_0 - \chi(K))$$

(iii)
$$\alpha_0 \ge \frac{1}{2} [49 - 24\chi(K)]$$

(c) Using (b) prove that any triangulation of the projective plane P must have at least six vertices, fifteen 1-simplexes, and ten 2-simplexes.

(d) Prove that the fundamental group $\pi_I(S^I)$ is isomorphic to the group \mathbb{Z} of integers under addition.

20. (a) If *K* is an oriented complex, then prove that $B_p(K) \subset Zp(K)$ for each integer *p* such that $0 \le p \le n$; n, where *n* is the dimension of *K*.

(b) Let K and L be simplicial complexes. Prove that every simplicial mapping $p: |K| \rightarrow |L|$ is continuous.

(c) Consider the family $\pi_I(X, x_0)$ of loops in X with base point x_0 . Prove that $\pi_I(X, x_0)$ is a group under the following operation:

$$[\alpha] \circ [\beta] := [\alpha * \beta]$$
 for all $[\alpha], [\beta] \in \pi_1(X, x_0)$.

- 21. (a) Prove that two loops α and β in S^1 with base point 1 are equivalent if and only if they have the same degree.
 - (b) State and prove Euler Poincare Theorem.
 - (c) If $\sigma : I \to S^I$ is a path in S^I with initial point 1, then there is a unique covering path $\sigma^{\sim} : I \to \mathbb{R}$ with initial point 0.

$(2 \times 5 = 10 \text{ weightage})$