(2 Pages)

Name..... Reg.No.....

FOURTH SEMESTER M. Sc. DEGREE EXAMINATION, APRIL 2022 (Regular/Improvement/Supplementary)

MATHEMATICS FMTH4C15- ADVANCED FUNCTIONAL ANALYSIS

Time: 3 Hours

Maximum Weightage: 30

Part A: Answer all questions. Each carries one weightage.

- 1. Define the point spectrum, continuous spectrum and residual spectrum of an operator on a Banach space.
- 2. Prove that, if L is invariant with respect to a symmetric operator A, then so is L^{\perp} .
- 3. If A is a compact self-adjoint operator, then show that A has an eigen value λ such that $|\lambda| = ||A||$.
- 4. If A is a non negative operator and if $\langle Ax, x \rangle = 0$, then prove that Ax = 0.
- 5. If E is a linear space, $P: E \mapsto E$ is a projection, and if $E_1 = \operatorname{Im} P$ and $E_2 = \ker P$, then show that $E_1 + E_2 = E$ and $E_1 \cap E_2 = 0$.
- 6. If *P* is a projection and Im $P \perp \ker P$, then show that $P = P^*$.
- 7. For every $x_1 \neq x_2$ in a normed space X, prove that there exists $f \in X^*$ such that $f(x_1) \neq f(x_2)$.
- 8. Define Banach algebras. Give one example.

 $(8 \times 1 = 8 \text{ weightage})$

Part B: Answer any *two* questions from each unit. Each carries *two* weightage.

Unit 1

- 9. If *T* is a compact operator on an infinite dimensional Banach space *X*, then for every $\varepsilon > 0$, prove that there is only a finite number of linearly independent eigenvectors corresponding to eigenvalues λ_i with $|\lambda_i| \ge \varepsilon$.
- 10. If T is a compact operator and λ is an eigenvalue of T, prove that $\ker T_{\overline{\lambda}}^* \neq 0$ if and only if $\ker T_{\lambda} \neq 0$.
- 11. If *T* is a compact self-adjoint operator on an infinite dimensional Hilbert space *H*, then prove that $\langle Tx, x \rangle \ge 0$ for every $x \in H$ if and only if there are no negative eigen values.

- 12. If $A_0 \le A_1 \le \dots \le A_n \le \dots \le A$, show that there exists a bounded operator *B* and $A_n x \to Bx$ for all $x \in H$.
- 13. Let $T: E \mapsto E$ be any linear operator, $E_1 + E_2 = E$ and let *P* be the projection onto E_1 parallel to E_2 . Then prove that PT = TP if and only if E_1 and E_2 are invariant subspaces of *T*.
- 14. Let $Q_n(t)$ and $P_n(t)$ be sequences of polynomials such that for all $t \in [m, M]$, $Q_n(t) \downarrow \psi(t) \in K$ and $P_n(t) \downarrow \varphi(t) \in K$. Let $\psi(t) \leq \varphi(t)$ for all $t \in [m, M]$. Then show that $\lim_{n \to \infty} Q_n(A) \leq \lim_{n \to \infty} P_n(A)$.

Unit 3

- 15. Show that every complete metric space is a set of second category.
- 16. State and prove the Banach open mapping theorem.
- 17. For a real Banach space X, show that the unit ball $\{f \in X^* : || f || \le 1\}$ is a compact set in the ω^* -topology.

 $(6 \times 2 = 12 \text{ weightage})$

Part C: Answer any two questions. Each carries 5 weightage.

18. (a) If *T* is a compact operator on a Banach space, prove that $\sigma_p(T) \setminus \{0\} = \overline{\sigma_p(T^*)} \setminus \{0\}$.

(b) Prove that $\langle Ax, x \rangle \in R$ for any $x \in H$ if and only if A is symmetric.

19. (a) Let A be such that $m \cdot I \le A \le M \cdot I$ for some $m, M \in R$ and let P be a polynomial satisfying $P(z) \ge 0$ for all $z \in [m, M]$. Then show that $P(A) \ge 0$.

(b) Prove that every orthoprojection P in a Hilbert space satisfies $0 \le P \le I$.

20. (a) State and prove the closed graph theorem.

(b) State and prove Banach-Steinhaus theorem.

- 21. (a) Let p(x) be a convex function and p(x) <∞ for all x ∈ L. Let f₀ be a linear functional defined on a subspace L₀ of L such that |f₀(x)| ≤ p(x) for all x ∈ L₀. Show that there exists a linear functional f on L such that f |_{L₀} = f₀ and |f(x)| ≤ p(x) for every x ∈ L.
 - (b) If X is a reflexive space, then show that every closed subspace E of X is also reflexive.