(2 Pages)

\mathbf{R} eg.	No:	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Nam	e: •			•														

FOURTH SEMESTER M.Sc DEGREE EXAMINATION, APRIL 2022

(Regular/Improvement/Supplementary)

STATISTICS

FMST4E13: STATISTICAL DECISION THEORY AND BAYESIAN ANALYSIS

Time : 3 Hours.

Maximum Weghtage : 30.

Part A: Answer any four questions. Each carries two weightage.

- 1. Differentiate randomized and non-randomized decision rules with examples.
- 2. Discuss the notion of preference pattern in utility theory.
- 3. Explain the minimax principle.
- 4. If $f(x|\theta)$ is $B(n,\theta)$ density and prior is $\pi(\theta) \sim beta(\alpha,\beta)$. Find the marginal density of X and hence the posterior density of $\theta|X$.
- 5. Give the explanation of Laplace rule of succession.
- 6. State Lindley's procedure for test of significance.
- 7. Define absolute error loss function. What is the Bayes estimator under this loss function.

 $(4 \times 2 = 8 \text{ weightage})$

PART B: Answer any four questions. Each carries three weightage.

- 8. Discuss the axiomatic development of utility and explain how utility function is constructed.
- 9. Determine the Jeffrey's non-informative prior for the unknown vector of parameters in $Gamma(\alpha, \beta)$ distribution.
- 10. Prove that a unique minimax strategy is admissible.
- 11. Let $X \sim U(0, \theta)$. Suppose that the prior density $\pi(\theta) = \frac{\alpha}{\theta^{\alpha+1}}; \theta \ge 1$. Using the quadratic loss function, find the Bayes estimator of θ .
- 12. Let $X \sim B(n, \theta)$. The prior density of θ is U(0, 1). Find Bayes estimator of θ using loss function $L(\theta, T) = \frac{(\theta T)^2}{\theta(1 \theta)}$.

- 13. Write a note on general linear model.
- 14. Explain the concept of predictive inference.

 $(4 \times 3 = 12 \text{ weightage})$

PART C: Answer any two questions. Each carries five weightage.

- 15. a) Discuss the basic elements of a statistical decision problem and illustrate them with a suitable example.
 - b) Define 0-1 loss function and mention its use in testing situations.
- 16. a) Show that if $L(\theta, a) = w(\theta)(\theta a)^2$, the Bayes rule is

$$\delta^*(x) = \frac{\int \theta w(\theta) f(x|\theta) d\pi(\theta)}{\int w(\theta) f(x|\theta) d\pi(\theta)}.$$

b) Let X_1, X_2, \dots, X_n be iid $U(0, \theta)$ random variables. Suppose the prior distribution is

$$\pi(\theta) = \begin{cases} \frac{\alpha\beta^{\alpha}}{\theta^{\alpha+1}}, & \theta \ge \beta, \alpha > 0\\ \theta, & \theta < \beta. \end{cases}$$

If $L(\theta, \delta) = (\theta - \delta)^2$, find Bayes estimator of θ .

- 17. a) What is meant by non-informative prior?. Give examples.
 - b) Define improper priors and maximum entropy priors.
 - c) Prove that if an equalizer strategy is admissible, then it is minimax.
- 18. a) Distinguish between homoscedastic disturbances and hetroscedastic disturbances.
 - b) Explain the concept of robustness of Bayes rules.

 $(2 \times 5 = 10 \text{ weightage})$