D4AST2001

Reg.No	•	••	••	•	•	•	•	•	•	•	•	•
Name:	•	••	••	•	•	•	•	•	•	•	•	•

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2022 STATISTICS

FMST4C13: MULTIVARIATE ANALYSIS

Time: 3 Hours

Max. Weightage: 30

Part A: Answer any four questions. Each carries two weightage

- 1. Let X_1, X_2, X_3 be independent univariate normal random variables with $E(X_1) = E(2X_2) = E(3X_3) = 1$ and $V(X_1) = V(X_2) = V(X_3) = 1$. Define $Y_1 = X_1$, $Y_2 = 2X_2, Y_3 = 3X_3$. If $\underline{Y} = (Y_1, Y_2, Y_3)'$, identify the distribution of \underline{Y} .
- 2. If $X \sim N_p(0, \Sigma)$, where Σ is a positive definite matrix, derive the distribution of $X'\Sigma^{-1}X$.
- 3. Describe how do you test the hypothesis $H_0: \mu = \mu_0$, a given vector in \Re^p , given a random sample of size N from $N_p(\mu, \Sigma)$ when the dispersion matrix Σ is known.
- 4. Define Mahalanobis D^2 -statistic. Describe any two uses of D^2 -statistic.
- 5. What is spherical normal distribution? What hypothesis you test in sphericity test?
- 6. Describe classification problem. Illustrate it through an example.
- Describe Wishart distribution. Is it related to any of the univariate distributions? Justify your answer.

$$(4 \ge 2 = 8 \text{ weightage})$$

Part B: Answer any four questions. Each carries three weightage

8. Prove that a random vector X has multivariate normal distribution if and only if every linear combination l'x is univariate normal.

9. Explain the following terms:

(i) Factor loadings (ii) Orthogonal factor model.

- 10. State the necessary and sufficient condition for the independence of linear form in X and a quadratic form in X, when $X \sim N_p(0, \Sigma)$. Using this result verify that sample mean \bar{X} and sample variance S^2 based on a sample from univariate normal distribution are independent.
- 11. Given $\{X_{\alpha}, \alpha = 1, 2, ..., N\}$ be a random sample from $N_p(\mu, \Sigma)$ where μ is a known vector. Derive the maximum likelihood estimator of Σ .
- 12. Write down the characteristic function of Wishart distribution. State and prove the additive property of Wishart distribution.
- 13. Given a random sample from $N_p(\mu, \Sigma)$ where Σ is unknown, prove that the statistic to be used for testing $H_0: \mu = \mu_0$, a given vector in \Re^p , is the Hotelling's T^2 statistic.
- 14. Describe how do you classify an observation into one of two known multivariate normal populations.

 $(4 \times 3 = 12 \text{ weightage})$

Part C: Answer any two questions. Each carries five weightage

- 15. a) Let $X \sim N_p(\mu, \Sigma)$ and Y = CX, where C is a non-singular matrix of order $p \times p$. Prove that $Y \sim N_p(C\mu, C\Sigma C')$.
 - b) Suppose $\underline{X} \sim N_3(0, \Sigma)$ where $\Sigma = \begin{pmatrix} 7 & 3 & 2 \\ 3 & 4 & 1 \\ 2 & 1 & 2 \end{pmatrix}$. If \underline{X} is partitioned into two

subvector $X^{(1)} = \begin{pmatrix} X_1 \\ X_3 \end{pmatrix}$, $X^{(2)} = X_2$, find the conditional distribution of $X^{(1)}$ given $X^{(2)} = x_2$.

- 16. a) Derive the likelihood ratio test for testing $H_0: \Sigma = \Sigma_0$ based on a random sample from $N_p(\mu, \Sigma)$ when μ is unknown.
 - b) Derive the sphericity test.

- 17. a) Write down the maximum likelihood estimators of the parameters of the multinormal distribution. Check whether the estimators are (i) unbiased and (ii) consistent for the parameters.
 - b) Let $A \sim W_p(n, \Sigma)$ and with usual notation A is partitioned as

$$A = \left(\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array}\right).$$

Derive the marginal distribution of A_{11} .

- a) Describe how do you classify an observation into one of two multinormal populations when the population parameters are unknown.
 - b) Derive the first two principal components of X when $X \sim N_3(0, \Sigma)$ where $\Sigma = \begin{pmatrix} 2 & -1 & 3 \\ -1 & 5 & -3 \\ 3 & -3 & 5 \end{pmatrix}$.

 $(2 \ge 5 = 10$ weightage)