(2 Pages)

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2023 (Regular/Improvement/Supplementary) STATISTICS FMST3E01 - OPERATIONS RESEARCH

Time: 3 Hours

Maximum Weightage: 30

Part A: Answer any *four* questions. Each carries *two* weightage.

- 1. Explain the terms in context of LPP: (i) Non-negativity constraints; (ii) Optimum basic feasible solution; (iii) Degeneracy.
- 2. What is sensitivity analysis and why do we perform it?
- 3. Describe cutting plane method of solving an all-integer linear programming problem.
- 4. Explain the difference between a transportation problem and an assignment problem.
- 5. Write a short note on applications of non-linear programming problem.
- 6. Explain the EOQ with price breaks.
- 7. Describe a procedure to determine a minimal spanning tree for a given set of nodes and potential links.

 $(4 \times 2 = 8 \text{ weightage})$

Part B: Answer any *four* questions. Each carries *three* weightage.

- 8. Prove that if an LPP has a feasible solution, then it also has a basic feasible solution.
- 9. Describe the branch and bound method for the solution of integer programming problem.
- 10. Explain direct search method of non linear programming algorithms for the unconstrained problem.
- 11. Prove that the dual of the dual of a given primal is again primal.
- 12. Solve the following 2x2 game graphically:

	Player B			
Player A	B ₁	B ₂	B ₃	B ₄
A ₁	2	1	0	-2
A ₂	1	0	3	2

13. Briefly explain the algorithm to solve Shortest Route Problem.

14. Electra uses resin in its manufacturing process at the rate of 1000 liters per month. It cost Electra \$100 to place an order. The holding cost per liter per month is \$2 and the shortage cost per liter is \$40. Previous data shows that the demand during lead time is uniform in the range (0,100) liters. Determine the optimal ordering policy for Electra.

 $(4 \times 3 = 12 \text{ weightage})$

Part C: Answer any two questions. Each carries five weightage.

15. Use Big M method to

Maximize $Z = x_1 + 2x_2 + 3x_3 - x_4$ Subject to $x_1 + 2x_2 + 3x_3 = 15$ $2x_1 + x_2 + 5x_3 = 20$ $x_1 + 2x_2 + x_3 + x_4 = 10$

 x_1, x_2, x_3, x_4 are all non-negative integers.

- 16. (a) Explain Vogel's method of finding an initial basic feasible solution to a transportation problem. Explain the u-v method of improving it.
 - (b) Solve the following assignment problem.

Person\Job	1	2	3	4
А	18	26	17	11
В	13	28	14	26
С	38	19	18	15
D	19	26	24	10

17. Use separable convex programming to solve the NLPP :

Maximize $f(x) = 3x_1 + 2x_2$ Subject to $g(x) = 4x_1^2 + x_2^2 \le 16$ $x_1, x_2 \ge 0.$

18. A project has the following characteristics.

Activity	Optimistic time	Pessimistic time	Most likely time
1-2	1	5	1.5
2-3	1	3	2
2-4	1	5	3
3-5	3	5	4
4-5	2	4	3
4-6	3	7	5
5-7	4	6	5
6-7	6	8	7
7-8	2	6	4
7-9	5	8	6
8-10	1	3	2
9-10	3	7	5

(i) Construct a PERT network and find critical path and variance for each activity.

(ii) What is the probability that the project will be completed within 35 days.