(2 Pages)

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2023 (Regular/Improvement/Supplementary)

PHYSICS FPHY3C10: NUCLEAR AND PARTICLE PHYSICS

Time: 3 Hours

Maximum Weightage: 30

Part A: Short answer questions. Answer all questions. Each carries one weightage.

- 1. Why can't a single nuclear model explain all the properties of the nucleus?
- 2. What are magic numbers? Why are magic numbers never odd?
- 3. What is dark current in photomultiplier tubes?
- 4. Compare the voltage- sensitive type and charge-sensitive type preamplifiers.
- 5. Explain the functioning of surface barrier detector.
- 6. Briefly explain quark-gluon interaction.
- 7. How do hadrons differ from leptone? Explain.
- 8. What are confined quarks?

$(8 \times 1 = 8 \text{ weightage})$

Part B: Essay questions. Answer any two questions. Each carries five weightage.

- 9. Obtain the ground state properties of deuteron using a square well potential. Explain the observed spin and quadrupole moment of deuteron.
- 10. Explain the mechanism of production of energy instars and write the carbon-nitrogen cycle in nuclear fusion
- 11. Explain the working of semiconductor detectors. What are its advantages?
- 12. Discuss nuclear transformations. Give Fermi theory of β -deacy.

$(2 \times 5 = 10 \text{ weightage})$

Part C: Problems. Answer any *four* questions. Each carries *three* weightage.

- 13. Explain n-n and p-p scattering.
- 14. Predict the ground state spin and parity of the nuclei: ³³S, ⁷Li, ³⁹K, ⁴⁵Sc.
- 15. The first excited state of ¹⁸²W is 2⁺ and it is 0.1 MeV above the ground state. Estimate the energies of the lowest lying 4⁺ and 6⁺ states of 182 W.

- 16. What is the distance of closest approach of a 2 MeV proton to a gold nucleus? How does this distance compare with those for an α -particle of the same energy (For gold Z = 79).
- 17. Explain why each of the following cannot exist according to the quark model.(a) baryon of spin 1. (b) anti baryon of charge ⁺2.
- 18. Obtain the weight diagram for Baryon decuplet with intrinsic spin +3/2.
- 19. Allocate the isospin to the strange particles from the following equations.

(a)
$$\pi^- + p \longrightarrow \Lambda^0 + K^0$$

(b)
$$p + p \rightarrow \Lambda^0 + K^+ + p$$

(c) $\pi^+ + n \implies \Xi^- + K^+ + K^+$

 $(4 \times 3 = 12 \text{ weightage})$