D3AMT2205

Name.....

Reg.No.....

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2023 (Regular/Improvement/Supplementary) MATHEMATICS FMTH3E01 - CODING THEORY

(2 Pages)

Time: 3 Hours

Maximum Weightage: 30

Part A: Answer any four questions. Each carries two weightage.

- 1. Define Maximum likelihood decoding[MLD] and its types.
- 2. Check whether $S = \{1101, 0111, 1100, 0011\}$ is linearly independent or not?
- 3. Find the total number of bases of a linear code K^4 with dimension 4.
- 4. Prove that a Hamming code has distance 3.
- 5. Does there exist a (15, 7, 5) linear code?
- 6. Show that the cyclic shift π is a linear transformation.
- 7. Find a basis for the smallest linear cyclic code of length 4 containing v = 0101.
- 8. Prove that Golay code (23, 12, 7) is perfect.

 $(8 \ge 1 = 8 \text{ weightage})$

Part B: Answer any two questions from each unit. Each carries 2 weightage.

UNIT I

- 9. Define the reliability of a BSC. What can be said about a channel when
 - (a) its reliability is 0.
 - (b) its reliability is $\frac{1}{2}$.
- 10. Show that a code C of distance d will correct all error patterns of weight less than or equal to $\lfloor \frac{d-1}{2} \rfloor$ and there is atleast one error pattern of weight $1 + \lfloor \frac{d-1}{2} \rfloor$ which C will not correct.

...

11. Given is a parity-check matrix for a linear code *C*.
$$H = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
. Find generator matrices

for C and C^{\perp} .

(P.T.O.)

UNIT II

- 12. Prove the following
 - (a) A Hamming code has dimension $2^r 1 r$ and contains $2^{2^r 1 r}$ codewords.
 - (b) Hamming codes are perfect single-error correcting codes.
- 13. For the Hamming code of n = 7 decode the message w = 1101001.
- 14. Find generating and parity check matrices for an extended Hamming code of length 8.

UNIT III

- 15. Prove that every cyclic code contains a unique idempotent polynomial which generates the code.
- 16. Let C be a cyclic code of length n and let g(x) be the generator polynomial. If n k =degree (g(x)) then prove the following:
 - (a) C has dimension k.
 - (b) The code words corresponding to $g(x), xg(x), \ldots, x^{k-1}g(x)$ form a basis for C.
- 17. Let $\alpha \neq 0$ be an element of $GF(2^r)$. Let $m_{\alpha}(x)$ be the minimal polynomial of α . Then prove the following.
 - (a) $m_{\alpha}(x)$ is irreducible over K
 - (b) If f(x) is any polynomial over K such that $f(\alpha) = 0$, then $m_{\alpha}(x)$ is a factor of f(x)
 - (c) the minimal polynomial is unique
 - (d) the minimal polynomial $m_{\alpha}(x)$ is a factor of $1 + x^{2^r-1}$.

 $(6 \ge 2 = 12$ weightage)

Part C: Answer any two questions. Each carries five weightage.

- 18. (a) If $C = \{01000, 01001, 00011, 11001\}$ and a word w = 10110 is received, which code word was most likely sent?
 - (b) Let |M| = 3 and n = 3. For each word w in K^3 that could be received, find the word v in the code $C = \{000, 001, 110\}$ which IMLD will conclude was sent.
- 19. Prove that the r^{th} order Reed- Muller code RM(r, m) has following properties:
 - (a) distance $d = 2^{m-r}$
 - (b) dimension $k = \sum_{i=0}^{r} {m \choose i}$
 - (c) RM(r-1,m) is contained in RM(r,m), r > 0
 - (d) dual code RM(m 1 r, m), r < m.
- 20. Find all primitive elements in $GF(2^4)$.
- 21. Decode the received message w = 110111101011000 using the BCH code C_{15} .

 $(2 \ge 5 = 10 \text{ weightage})$