Name	
Reg.No	•

THIRD SEMESTER M. Sc. DEGREE EXAMINATION, NOVEMBER 2023 (Regular/Improvement/Supplementary)

MATHEMATICS FMTH3C11- MULTIVARIABLE CALCULUS AND GEOMETRY

Time: 3 Hours

Maximum Weightage: 30

Part A: Answer all questions. Each carries 1 weightage.

- 1. Let $B = \{x_1, x_2, x_3, \dots, x_n\}$ be a basis for a vector space *V* of dimension *n*. Then prove that every element *x* of V has a unique representation of the form $x = \sum_{j=1}^{n} c_j x_j$.
- 2. If $A \in L(\mathbb{R}^n, \mathbb{R}^m)$, then show that A is a uniformly continuous mapping of \mathbb{R}^n into \mathbb{R}^m .
- 3. Calculate the tangent vector at each point of the curve $\gamma(t) = (e^t, t^2)$.
- 4. Calculate the curvature of the circle $\gamma(t) = (x_0 + R \cos \frac{t}{R}, y_0 + R \sin \frac{t}{R})$.
- 5. Check whether $\sigma(u, v) = (u, v, uv)$ is a regular surface patch.
- 6. Show that the unit sphere S^2 is a smooth surface in R^3 .
- 7. Calculate the mean curvature and Gaussian curvature of the surface whose principal curvatures are k_1 and k_2 .
- 8. Define Weingarten map.

$(8 \times 1 = 8 \text{ weightage})$

Part B: Answer any two questions from each unit. Each carries 2 weightage

Unit 1

- 9. Prove that a linear operator *A* on a finite dimensional vector space *X* is one to one if and only if the range of *A* is all of *X*.
- 10. Prove that the set of all invertible operators on \mathbb{R}^n is an open subset of \mathbb{R}^n .
- 11. Suppose $A \in L(\mathbb{R}^{n+m}, \mathbb{R}^n)$ and A_x is invertible. Prove that corresponding to every $k \in \mathbb{R}^m$, there exists a unique $h \in \mathbb{R}^n$ such that A(h, k) = 0.

Unit 2

- 12. Let $\sigma: U \to R^3$ be a patch of a surface *S* containing a point $p \in S$, and let (u, v) be coordinates in *U*. Prove that the tangent space to *S* at *p* is the vector subspace of R^3 spanned by the vectors σ_u and σ_v .
- 13. Find the unit speed reparametrization of the logarithmic spiral $\gamma(t) = (e^{kt} \cos t, e^{kt} \sin t)$, where k is a non-zero constant.
- 14. Let $k: (\alpha, \beta) \to R$ be any smooth function, then prove that there is a unit speed curve $\gamma: (\alpha, \beta) \to R^2$ whose signed curvature is k.

Unit 3

- 15. Calculate the first fundamental form of the surface $\sigma(u, v) = (u v, u + v, u^2 + v^2)$.
- 16. Show that the normal curvature of any curve on a sphere of radius r is $\pm \frac{1}{r}$.
- 17. Let *S* be a connected surface of which every point is an umbilic. Prove that S is an open subset of a plane or a sphere.

$(6 \times 2 = 12 \text{ weightage})$

Part C: Answer any two questions. Each carries 5 weightage.

18. a) Prove that if X is a complete metric space and φ is a contraction from X into X then φ has a fixed point in X.

b) Suppose f is a continuously differentiable mapping on an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^n , f'(a) is invertible for some $a \in E$ and b = f(a). Then prove that there exist open sets U and V such that $a \in U$, $b \in V$, f is one to one on U and f(U) = V.

- 19. Show that a smooth map $f: S \to \tilde{S}$ is a local diffeomorphism if and only if, for all $p \in S$, the linear map $D_P f: T_p S \to T_{f(P)} \tilde{S}$ is invertible, where *S* and \tilde{S} are surfaces.
- 20. Suppose *f* maps an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m . Then prove that $f \in \mathcal{C}'(E)$ if and only if the partial derivatives $D_j f_i$ exist and are continuous on *E* for $1 \le i \le m, 1 \le j \le n$.
- 21. Find the second fundamental form and the Gaussian curvature of the surface of revolution $\sigma(u, v) = (f(u) \cos v, f(u) \sin v, g(u)); f(u) > 0$ for all values of u and $\dot{f}^2 + \dot{g}^2 = 1$.

 $(2 \times 5 = 10 \text{ weightage})$