(2 Pages)

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2022 (Regular/Improvement/Supplementary)

STATISTICS FMST3E01 - OPERATIONS RESEARCH

Time: 3 Hours

Maximum Weightage: 30

Part A: Answer any *four* questions. Each carries *two* weightage.

- 1. Define the terms: (i) Basic feasible solution; (ii) Degenerate basic solution; (iii) Optimum basic feasible solution.
- 2. Distinguish between 'Big- M' method and two phase method for solving LPP. Explain 'Big –M' method for solving a Linear Programming Problem.
- 3. Describe the branch and bound method for the solution of integer programming problem.
- 4. Explain the Maximin and Minimax principle used in Game theory.
- 5. Write the iterative procedure for solving a separable NLPP.
- 6. Describe briefly the EOQ concept. What are its limitations?
- 7. Briefly explain an algorithm to solve Shortest Route Problem.

$(4 \times 2 = 8 \text{ weightage})$

Part B: Answer any *four* questions. Each carries *three* weightage.

- 8. State and prove the fundamental theorem of linear programming.
- 9. Prove that the dual of the dual of a given primal is again primal.
- 10. Describe cutting plane method of solving an all-integer linear programming problem.
- 11. Give in detail the computational procedure of solving the assignment problem.
- 12. Derive the Kuhn- Tucker conditions for an optimal solution to a quadratic programming problem.
- 13. Briefly explain Probabilistic EOQ models.
- 14. Describe a procedure to determine a minimal spanning tree for a given set of nodes and potential links.

 $(4 \times 3 = 12 \text{ weightage})$

(P.T.O.)

Part C: Answer any two questions. Each carries five weightage.

15. Solve the following integer linear programming problem using the cutting-plane method:

Maximize $Z = 3x_1 + x_2 + 3x_3$ Subject to $-x_1 + 2x_2 + x_3 \le 4$ $4x_2 - 3x_3 \le 2$ $x_1 - 3x_2 + 2x_3 \le 3$

 x_1, x_2, x_3 are all non-negative integers.

16. Solve the nonlinear programming problem:

Optimize $Z = 4x_1^2 + 2x_2^2 + x_3^2 - 4x_1x_2$

Subject to $x_1 + x_2 + x_3 = 15$, $2x_1 - x_2 + 2x_3 = 20$; $x_1, x_2, x_3 \ge 0$

17. Use two-phase simplex method to

Maximize $Z = 5x_1 - 4x_2 + 3x_3$ Subject to $2x_1 + x_2 - 6x_3 = 20$ $6x_1 + 5x_2 + 10x_3 \le 76$ $8x_1 - 3x_2 + 6x_3 \le 50$

 $x_{1,}x_{2,}x_{3}$ are all non-negative integers.

18. A project has the following characteristics

Activity	Immediate		Pessimistic	Most likely
	Predecessor	time	time	time
А	-	1	7	1
В	-	1	7	4
С	-	2	8	2
D	А	1	1	1
Е	В	2	14	5
F	С	2	8	5
G	D,E	3	15	6
Н	F,G	1	3	2

(i) Construct a PERT network and find out the expected project completion time.

(ii) What duration will have 95% confidence for project completion?

 $(2 \times 5 = 10 \text{ weightage})$