Name	••••	•••	•••	•••	•••	•••	••	••	•	••
Reg.No	••••	•••	•••	•••	••	••	•	••	••	••

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2022 MATHEMATICS FMTH3E01: CODING THEORY

Time: 3 Hours

Maximum Weightage: 30

PART A: Answer ALL questions. Each carries 1 weightage.

- 1. Compute the weight of each of the following words and the distance between each pair of them: u = 1001010, v = 0110101, w = 0011110 and s = u + v + w.
- **2.** Define a linear code. Is $C = \{0000, 0101, 1010, 1100\}$ a linear code?
- 3. Define an algorithm for finding a basis for the dual code C^{\perp}
- 4. Define a perfect code and give an example of a perfect code.
- 5. Describe the r^{th} order Reed Muller code.
- 6. Does there exists a (15, 7, 5) linear code?
- 7. Define cyclic shift and cyclic code.
- 8. Find the generator polynomial of the dual of the cyclic code C of length n = 7and having generator polynomial $g(x) = 1 + x + x^3$.

PART B: Answer ANY TWO questions FROM EACH UNIT. Each carries 2 weightage.

UNIT I

- 9. If $C = \{01000, 01001, 00011, 11001\}$ and a word w = 10110 is received, which codeword was most likely to have been sent?
- 10. Show that a code C of distance d will correct all error patterns of weight less than or equal to $\lfloor \frac{d-1}{2} \rfloor$ and there is at least one error pattern of weight $1 + \lfloor \frac{d-1}{2} \rfloor$ which C will not correct.
- 11. For $S = \{1010, 0101, 1111\}$ and $C = \langle S \rangle$, compute the dual code C^{\perp} .

UNIT II

- 12. Prove that RM(r-1,m) is contained in RM(r,m), r > 0.
- 13. Show that an extended Hamming code of length 8 is a self-dual code.
- 14. Prove the following.
 - (a) Any perfect code of length and distance 2t + 1 has exactly 2 code words.
 - (b) Hamming codes are perfect single-error correcting codes.

(P.T.O.)

UNIT III

- 15. Find a parity check matrix for the cyclic code of length 7 having generator polynomial $g(x) = 1 + x + x^2 + x^4$.
- 16. If C is a linear cyclic code of length n and dimension k with generator g(x) and if $1 + x^n = g(x)h(x)$, then prove that C^{\perp} is a cyclic code of dimension n k with generator $x^k h(x^{-1})$
- 17. Let $\alpha \neq 0$ be an element of $GF(2^r)$. Let $m_{\alpha}(x)$ be the minimal polynomial of α . Then prove the following.
 - (a) $m_{\alpha}(x)$ is irreducible over K.
 - (b) If f(x) is any polynomial over K such that $f(\alpha) = 0$, then $m_{\alpha}(x)$ is a factor of f(x).
 - (c) The minimal polynomial is unique
 - (d) The minimal polynomial $m_{\alpha}(x)$ is a factor of $1 + x^{2^r-1}$.

PART C: Answer ANY TWO questions. Each carries 5 weightage.

- 18. (a) Using the elementary row operation of a matrix, find a basis for $C = \langle S \rangle$, where $S = \{10101, 01010, 11111, 00011, 10110\}$.
 - (b) Given is a parity-check matrix for a linear code C.

$$H = \begin{pmatrix} .1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$
 Find generator matrices for C and C^{\perp} .

- 19. Prove the following.
 - (a) The extended Golay code C_{24} is self dual.
 - (b) The distance of C_{24} is 8.
 - (c) C_{24} is a three error-correcting code.
- 20. Find the minimal polynomial of each element of $GF(2^4)$ constructed using $p(x) = 1 + x^3 + x^4$.
- 21. Let $g(x) = 1 + x^4 + x^6 + x^7 + x^8$ be the generator polynomial for a cyclic code of length n = 15 and d = 5. Decode the received word w = 110011100111000.