(2 Pages)

Name
Reg.No

THIRD SEMESTER M. Sc. DEGREE EXAMINATION, NOVEMBER 2022 (Regular/Improvement/Supplementary)

MATHEMATICS FMTH3C13- FUNCTIONAL ANALYSIS

Time: 3 Hours

Maximum Weightage: 30

Part A: Answer all questions. Each carries 1 weightage.

- 1. Define a norm on λ_{∞} . Verify the conditions.
- 2. What do you mean by a Banach space? Give an example of a normed space which is not a Banach space.
- 3. If (x_n) is a Cauchy sequence in a normed space, then show that the sequence $(||x_n||)$ is always convergent.
- 4. State and prove Parseval's Identity.
- 5. If L is a closed subspace of a Hilbert space, then prove that $(L^{\perp})^{\perp} = L$.
- 6. If a linear functional is continuous at x = 0, then show that it is continuous at any x.
- 7. Show that the dual operator A^* of a bounded operator A is bounded and $||A|| = ||A^*||$.
- 8. Define three different notions of convergence in the space of bounded operators.

$(8 \times 1 = 8 \text{ weightage})$

Part B: Answer any two questions from each unit. Each carries 2 weightage.

Unit 1

- 9. State and prove Holder's inequality for scalar sequences.
- 10. Show that the sequence space λ_p is proper subspace of λ_q , where $1 \le p < q < \infty$.
- 11. Define the completion of a normed space and show that every normed space has a completion.

- 12. Define inner product. Show that an inner product is a continuous function with respect to both variables.
- 13. State and prove Riesz representation theorem.
- 14. Show that a Hilbert space is separable if and only if there exists a complete orthonormal system.

Unit 3

15. For
$$1 and $\frac{1}{p} + \frac{1}{q} = 1$, prove that $(\lambda_p)^* = \lambda_q$.$$

- 16. Define reflexive spaces. Show that every finite dimensional normed space is a reflexive space.
- 17. Define compact operator. Show that every bounded operator of finite rank is a compact operator.

$(6 \times 2 = 12 \text{ weightage})$

Part C: Answer any two questions. Each carries 5 weightage.

18. a) Show that the sequence space c_0 with supremum norm is a Banach space.

b) Define Quotient space. If X is a Banach space and if E is a closed subspace of X, show that the quotient space X / E is a Banach space.

19. a) Describe the Gram-Schmidt orthogonalization process.

b) If L is a closed subspace of a Hilbert space H, then prove that $H = L \oplus L^{\perp}$.

20. a) Let *H* be a Hilbert space and $A: H \to H$ be a linear operator. Prove that *A* is compact if and only if its adjoint A* is compact.

b) Define relatively compact sets. Show that M is relatively compact if and only if for every $\varepsilon > 0$, there exists a finite ε -net in M.

21. a) If X is a normed space and if Y is a complete normed space, prove that the space

 $L(X \alpha Y)$ is a Banach space.

b) For any bounded linear operator A on a Hilbert space H, prove that

 $||A|| = \sup \{\langle Ax, y \rangle | : ||x|| \le 1, ||y|| \le 1 \}.$

$(2 \times 5 = 10 \text{ weightage})$