(2 Pages)

Name:....

Reg.No:....

THIRD SEMESTER M.Sc DEGREE EXAMINATION NOVEMBER 2021 (Regular/Improvement/Supplementary) MATHEMATICS FMTH3E03: MEASURE AND INTEGRATION

Time: 3 Hours

Maximum Weightage: 30

Part A: All questions can be answered. Each carries one weightage. (Ceiling 6 weightage)

- 1. Show that an extended real-valued function defined on a nonempty set X can be written as the difference of two nonnegative functions.
- 2. Consider the statement: Let μ be a positive measure on a σ -algebra \mathcal{M} and $A_1 \supseteq A_2 \supseteq A_3 \supseteq \ldots$ be such that $A_i \in \mathcal{M}$ for each i. If $\mu(A_1) < \infty$, then $\mu(A_n) \to \mu(A)$, where $A = \bigcap_{n=1}^{\infty} A_n$. Show by example that the assumption, $\mu(A_1) < \infty$ cannot be dropped.
- 3. State True or False and justify your claim: If (X, \mathcal{M}, μ) is a measure space and $f: X \to [-\infty, \infty]$ is measurable, then

 $\int_X f d\mu = 0 \text{ if and only if } f = 0 \text{ almost everywhere.}$

- 4. Define Lebesgue measurable subsets in \mathbb{R}^k and Lebesgue measure on \mathbb{R}^k .
- 5. Show that the Lebesgue measure of a subspace Y of \mathbb{R}^k is 0 if the dimension of Y is strictly less than k.
- 6. Show that if $\lambda_1, \lambda_2, \mu$ are measures on a σ -algebra \mathcal{M} and μ is a positive measure, such that $\lambda_1 \perp \mu$ and $\lambda_2 \perp \mu$, then $\lambda_1 + \lambda_2 \perp \mu$.
- 7. State True or False and justify your claim: If \mathscr{I} and \mathscr{T} are σ -algebras on X and Y respectively and $E \in \mathscr{I} \times \mathscr{T}$, then the x-sections $E_x \in \mathscr{T}$ and y-sections $E^y \in \mathscr{I}$ for every $x \in X, y \in Y$.
- 8. Show by example that the product of two complete measure spaces need not be a complete measure space.

Part B: All questions can be answered. Each carries two weightage. (Ceiling of 12 weightage)

- 9. Let (X, \mathcal{M}, μ) be a measure space and $f : X \to \mathbb{C}$ be a complex-valued measurable function. Then explain rigorously the meaning of $\int_X f d\mu$.
- 10. State Riesz Representation Theorem for positive linear functionals on $C_c(X)$ where X is a locally compact Hausdorff space. Prove the uniqueness part.

11. (a) Show that if (f_n) is a sequence of nonnegative measurable functions then

$$\int_X (\liminf f_n) d\mu \leqslant \liminf \int_X f_n d\mu$$

- (b) Show by example that strict inequality can happen in the above case.
- 12. Show that there exists a subset of [0, 1] that is not Lebesgue measurable.
- 13. Show that the Lebesgue measure of countable subset of \mathbb{R} is 0. Is the converse true? Justify your claim.
- 14. Using Radon-Nikodym Theorem, establish the polar representation of a complex measure μ .
- 15. Show by example that a function f on the product space $X \times Y$ need not be $\mathscr{I} \times \mathscr{T}$ -measurable even when f^x is \mathscr{T} -measurable and f_y is \mathscr{I} -measurable for every $x \in X, y \in Y$.
- 16. Show that the identity,

$$\int d\mu(x) \int f(x,y) d\lambda(y) = \int d\lambda(y) d\mu(x) \int f(x,y) d\mu(x) d\mu(x) \int f(x,y) d\mu(x) d$$

need not hold even if the two iterated integrals exist and finite.

17. Let m_l denotes the Lebesgue measure on \mathbb{R}^l for $l \in \mathbb{N}$. Is the product measure $m_r \times m_s$ complete?

Part C: All questions can be answered. Each carries six weightage. (Ceiling 12 weightage)

- 18. (a) Introduce the vector space $L^1(\mu)$ and show that the map $f \mapsto \int f d\mu$ is a positive linear functional on $L^1(\mu)$.
 - (b) State and prove Lebesgue Dominated Convergence Theorem.
- 19. (a) Let X be a compact metric space. Show that there exist infinitely many non-constant bounded continuous functions on X.
 - (b) Give an example of a measure space (X, \mathcal{M}, μ) such that $\int_X f d\mu$ becomes an infinite sum for complex-valued measurable functions f defined on X.
- 20. Suppose f is a complex measurable function on X, $\mu(A) < \infty$, f(x) = 0 if $x \notin A$ and $\epsilon > 0$. Show that there exists a continuous function g on X with compact support such that

$$\mu(\{x: f(x) \neq g(x)\}) < \epsilon$$
 and $\sup_{x \in X} |g(x)| \leq \sup_{x \in X} |f(x)|.$

- 21. (a) State Fubini's theorem.
 - (b) Show by example that σ -finiteness assumption cannot be dropped.
 - (c) Show by example that integrability assumption on f cannot be dropped.