(2 Pages)

Name
Reg.No

THIRD SEMESTER M. Sc. DEGREE EXAMINATION, NOVEMBER 2021 (Regular/Improvement/Supplementary)

MATHEMATICS FMTH3C13- FUNCTIONAL ANALYSIS

Time: 3 Hours

Maximum Weightage: 30

Part A: All questions can be answered. Each carries one weightage (Ceiling 6 weightage).

- 1. Show that the linear space C[a,b] of continuous functions is infinite dimensional.
- 2. Define linear independence relative to a subspace. Show that a set of vectors in a linear space is linearly independent if and only if it is linearly independent relative to the zero subspace.
- 3. Show that the sequence space c_0 with sup norm is a Banach space.
- 4. State and prove Cauchy-Schwartz inequality in an inner product space. .
- 5. Give example of an inner product space which is not a Hilbert space. Justify it.
- 6. Show that $\left\{\frac{1}{\sqrt{2\pi}}e^{int}\right\}_{n=-\infty}^{\infty}$ is an orthonormal system in the Hilbert space $L_2[a,b]$.
- 7. If L is a closed subspace of a normed space, then prove that $(L^{\perp})^{\perp} = L$.
- 8. Define strong convergence. Show that strong convergence is weaker than norm convergence.

Part B: All questions can be answered. Each carries two weightage (Ceiling 12 weightage).

- 9. State and prove Holder's inequality for functions.
- 10. Define quotient norm and verify that it is indeed a norm.
- 11. Define Banach spaces. Show that C[a,b] with sup norm is a Banach space.
- 12. Define the inner product on ℓ_2 and verify that it is a Hilbert space.
- 13. Define complete system and give one example. If $\{f_i\}$ is a complete system in a Hilbert space H and $x \perp f_i$ for all i, then prove that x = 0.

- 14. State and prove Riesz representation theorem.
- 15. Show that ℓ_1 is the dual space of c_0 .
- 16. If X is a normed space and if Y is a complete normed space, prove that the space $L(X \mapsto Y)$ is a Banach space.
- 17. Let *H* be a Hilbert space and $A: H \to H$ be a linear operator. Prove that *A* is compact if and only if its adjoint A^* is compact.

Part C: All questions can be answered. Each carries six weightage (Ceiling 12 weightage).

- 18. (a) Define the completion of a normed space and show that every normed space has a completion.
 - (b) Prove that the completion of a normed space is unique up to isometry.
- 19. (a) Prove that a Hilbert space H is separable if and only if there exists a complete orthonormal system $\{e_i\}_{i\geq 1}$ in H.

(b) Show that every separable Hilbert space has an orthonormal basis.

- 20. (a) Show that all ℓ_p spaces, 1 are reflexive.
 - (b) For any bounded linear operator A on a Hilbert space H, prove that

$$||A|| = \sup \{\langle Ax, y \rangle | : ||x|| \le 1, ||y|| \le 1\}.$$

- 21. (a) Define compact operator. Show that the space $K(X \mapsto Y)$ is a closed subspace of $L(X \mapsto Y)$.
 - (b) Show that every bounded operator of finite rank is a compact operator.