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THIRD SEMESTER M. Sc. DEGREE EXAMINATION, NOVEMBER 2021
(Regular/Improvement/Supplementary)

MATHEMATICS
FMTH3C13- FUNCTIONAL ANALYSIS

Time: 3 Hours Maximum Weightage: 30

Part A: All questions can be answered. Each carries one weightage (Ceiling 6 weightage).

Show that the linear space C[a,b]of continuous functions is infinite dimensional.

Define linear independence relative to a subspace. Show that a set of vectors in a linear
space is linearly independent if and only if it is linearly independent relative to the zero
subspace.

Show that the sequence space ¢, with sup norm is a Banach space.

State and prove Cauchy-Schwartz inequality in an inner product space. .

Give example of an inner product space which is not a Hilbert space. Justify it.

Show that { ei“‘} is an orthonormal system in the Hilbert space L,[a,b].
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If L isa closed subspace of a normed space, then prove that (LL)L= L.

Define strong convergence. Show that strong convergence is weaker than norm
convergence.

Part B: All questions can be answered. Each carries two weightage (Ceiling 12 weightage).
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State and prove Holder’s inequality for functions.
Define quotient norm and verify that it is indeed a norm.

Define Banach spaces. Show that C[a,b] with sup norm is a Banach space.
Define the inner product on 7, and verify that it is a Hilbert space.

Define complete system and give one example. If {f,} is a complete system in a Hilbert

space H and x L f, forall i then prove that x =0.
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14. State and prove Riesz representation theorem.

15.  Show that /, is the dual space of ¢, .

16. If X is a normed space and if Y is a complete normed space, prove that the space
L(X — Y) is a Banach space.

17. Let H be a Hilbert space and 4: H — H be a linear operator. Prove that 4 is compact if
and only if its adjoint 4™ is compact.

Part C: All questions can be answered. Each carries six weightage (Ceiling 12 weightage).

18. (a) Define the completion of a normed space and show that every normed space has a
completion.

(b) Prove that the completion of a normed space is unique up to isometry.

19. (a) Prove that a Hilbert space H is separable if and only if there exists a complete
orthonormal system {e,},., in H.

(b) Show that every separable Hilbert space has an orthonormal basis.

20. (a) Show thatall /¢, spaces, 1< p <o are reflexive.

(b) For any bounded linear operator 4 on a Hilbert space H, prove that

V<1}

4] = sup {( 4,2 [ <1,

21. (a) Define compact operator. Show that the space K(X + Y) is a closed subspace of
L(X > Y).

(b) Show that every bounded operator of finite rank is a compact operator.



