D3AMT2001

THIRD SEMESTER M. Sc. DEGREE EXAMINATION, NOVEMBER 2021 (Regular/Improvement/Supplementary)

MATHEMATICS FMTH3C11- MULTIVARIABLE CALCULUS AND GEOMETRY

Time: 3 Hours

Maximum Weightage: 30

Part A: All questions can be answered. Each carries one weightage (Ceiling 6 weightage).

- 1. Let A be a linear transformation from the vector space \mathbb{R}^n to \mathbb{R}^m . Prove that $||A|| < \infty$.
- 2. Compute the directional derivative of $f: \mathbb{R}^2 \to \mathbb{R}$ defined by f(x, y) = xy, at (u, v) in the direction of (a, b).
- 3. Illustrate using an example that the parametrization of a given level curve need not be unique.
- 4. Compute the curvature of the curve $\gamma(t) = (\frac{4}{5}\cos t, 1 \sin t, \frac{-3}{5}\cos t)$.
- 5. Check whether $\sigma(u, v) = (u, v, uv)$ is a regular surface patch.
- 6. Compute the first fundamental form of the plane $\sigma(u, v) = a + pu + qv$.
- 7. Define Weingarten map.
- 8. If k_1 and k_2 are the principal curvatures of a surface S, then show that the mean curvature of the surface is $\frac{k_1+k_2}{2}$.

Part B: All questions can be answered. Each carries two weightage (Ceiling 12 weightage).

- 9. Let X be an n-dimensional vector space. If $1 \le r \le n$ and $\{y_1, y_2, \dots, y_r\}$ is an independent set in X, then prove that X has a basis containing $\{y_1, y_2, \dots, y_r\}$.
- 10. State and prove the Contraction Principle.
- 11. Prove that a linear operator A on \mathbb{R}^n is invertible if and only if det $[A] \neq 0$.
- 12. Calculate the arc length of a logarithmic spiral $\gamma(t) = (e^{kt} \cos t, e^{kt} \sin t)$ starting at the point $\gamma(0) = (1,0)$, where k is a non-zero constant.
- 13. Let γ be a unit-speed curve in R^3 with constant curvature and zero tension. Prove that γ is a parametrization of a circle or part of a circle.
- 14. Define an orientable surface in R^3 . Prove that Mobius band is not an orientable surface.
- 15. Compute the second fundamental form of the elliptic paraboloid $\sigma(u, v) = (u, v, u^2 + v^2).$

- 16. Prove that the Weingarten map is self-adjoint.
- 17. Find the principal curvatures of the unit cylinder represented by the surface patch $\sigma(u, v) = (\cos v, \sin v, u)$.

Part C: All questions can be answered. Each carries six weightage (Ceiling 12 weightage).

18. a) Prove that the set of all invertible linear operators on \mathbb{R}^n is an open subset of $L(\mathbb{R}^n)$.

b) State and prove the chain rule for differentiation of functions of several variables.

- 19. State and prove the Inverse Function theorem.
- 20. Let $\gamma: (\alpha, \beta) \to R^2$ be a unit speed curve, let $s_0 \in (\alpha, \beta)$ and let φ_0 be such that $\dot{\gamma}(s_0) = (\cos \varphi_0, \sin \varphi_0)$. Then prove that there is a unique smooth function $\varphi: (\alpha, \beta) \to R$ such that $\varphi(s_0) = \varphi_0$ and that the equation $\dot{\gamma}(s) = (\cos \varphi(s), \sin \varphi(s) + \log s)$ holds for all $s \in (\alpha, \beta)$.
- 21. a) Let $\sigma(u, v)$ be a surface patch with first and second fundamental forms $Edu^2 + 2Fdudv + Fdv^2$ and $Ldu^2 + 2Mdudv + Ndv^2$ respectively. Then prove that the Gaussian curvature K and the mean curvature H are $K = \frac{LG 2MF + NE}{2(EG F^2)}$ and $H = \frac{LN M^2}{EG F^2}$ respectively.

b) Compute the mean curvature and Gaussian curvatures of the surface of revolution $\sigma(u, v) = (f(u) \cos v, f(u) \sin v, g(u))$ where f > 0 and $\dot{f}^2 + \dot{g}^2 = 1$ everywhere (a dot denoting $\frac{d}{du}$).