THIRD SEMESTER M. Sc. DEGREE EXAMINATION, NOVEMBER 2020 STATISTICS FMST3E01 - OPERATIONS RESEARCH

Time: Three Hours

Maximum Weightage: 30

Part A: Answer any *four* questions. Each carries *two* weightage.

- 1. Explain the concept of solution, feasible solution and basic feasible solution of a linear programming problem.
- 2. Define convex set and extreme point of a convex set. Show that optimum feasible solution of a linear programming problem if it exists will always be at an extreme point of the region of feasible solution.
- 3. Discuss Vogal's approximation method of finding an initial basic feasible solution to a transportation problem.
- 4. Explain dominance property associated with a rectangular game. Use dominance property to reduce the game.

	B_1	B_2	B ₃	B_4
A_1	3	2	4	0
A_2	3	4	5	1
A ₃	4	2	4	-1

- 5. Define minimax and maximin value of a game. Establish the relation between them.
- 6. Discuss the need of inventory control. Explain various costs associated with an inventory. What do you mean by EOQ formula?
- 7. Describe the concept of path, tree and minimal spanning tree associated with a network. Give an example for each.

$(4 \times 2 = 8 \text{ weightage})$

Part B: Answer any *four* questions. Each carries *three* weightage.

- 8. Prove that extreme points of the region of feasible solution to an LPP correspond to a basic feasible solution and vice versa.
- 9. State dual of an LPP. State and prove fundamental theorem of duality.
- 10. Define mixed strategies and expected value of a game. Explain how an mX2 game can be solved graphically by an example.
- 11. What do you mean by sensitivity analysis associated with an LPP?

Max Z = CXSubject to AX = b $X \ge 0$.

Explain how variations in the cost vector C and requirement vector b can be handled.

- 12. Explain how will you solve an integer programming problem by Gomery's cutting plane method.
- 13. Explain the concept of price break associated with an inventory model. Discuss the solution of EOQ problem with one price break.
- 14. Derive Kuhn-Tucker condition for solving a non-linear programming problem and discuss its sufficiency.

 $(4 \times 3 = 12 \text{ weightage})$

Part C: Answer any two questions. Each carries five weightage.

15. Explain how you can solve an LPP by two-phase simplex method. Use two-phase simplex method to solve

Max Z = $6x_1 + 4x_2$ subject to $2x_1 + 3x_2 \le 30$ $3x_1 + 2x_2 \le 24$ $x_1 + x_2 \ge 3$ $x_1 \ge 0$ $x_2 \ge 0$

- 16. a) State and prove fundamental theorem of game.
 - b) Solve the game by LPP:

Player l	В
----------	---

	1	-1	3
Player A	3	5	-3
	7	3	-2

- 17. a) What do you mean by critical path and critical activities? What are the total and free floats of a non-critical activity?
 - b) Given the following information

Activity:	0-1	1-2	1-3	2-4	3-4	3-6	4-7	5-7	6-7
Duration:	2	8	10	3	3	7	5	2	8

- (i) Draw the network diagram.
 - (ii) Identify the critical path.
- (iii) Determine total and free float for non-critical activities.
- 18. a) Discuss Wolfe's method of solving a quadratic programming problem.
 - b) Solve the QPP

Maximize $Z = 2x_1 + 3x_2 - 2x_1^2$ subject to $x_1 + 4x_2 \le 8$ $x_1 + x_2 \le 2$ $x_1 \ge 0; x_2 \ge 0.$

 $(2 \times 5 = 10 \text{ weightage})$