D3AMT1905

(2 Pages)

Name.....

Reg.No.....

Maximum Weightage: 30

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2020 MATHEMATICS FMTH3E03-MEASURE AND INTEGRATION

Time: 3 Hours

Part A: Answer all questions. Each carries 1 weightage:

1. State True or False and justify your claim: If X is a measurable space and $E \subseteq X$, then the characteristic function $\chi_E : X \to \mathbb{R}$ defined by

 $\chi_E(x) = \{ \begin{array}{ccc} 1 & \text{if} & x \in E \\ 0 & \text{if} & x \notin E \end{array} \text{ is always measurable.} \end{cases}$

2. State True or False and justify your claim: Let μ be a positive measure on a σ -algebra \mathcal{M} and $A_1 \supseteq A_2 \supseteq A_3 \supseteq \ldots$ be such that $A_i \in \mathcal{M}$ for each *i*. Then

$$\mu(A_n) \to \mu(A)$$
, where $A = \bigcap_{n=1}^{\infty} A_n$.

- 3. State True or False and justify your claim: The space $C_c(X)$ of all continuous functions with compact support is nontrivial if X is a locally compact Hausdorff space.
- 4. Define Lebesgue measurable subsets in \mathbb{R}^k and Lebesgue measure on \mathbb{R}^k .
- 5. Show that if $\lambda_1, \lambda_2, \mu$ are measures on a σ -algebra \mathcal{M} and μ is a positive measure, such that $\lambda_1 \perp \mu$ and $\lambda_2 \perp \mu$, then $\lambda_1 + \lambda_2 \perp \mu$.
- 6. State True or False and justify your claim: If μ is a σ -finite measure on a σ -algebra \mathcal{M} in a set X, then every $w \in L^1(\mu)$ has the property that w(x) = 1 for some $x \in X$.
- 7. State True or False and justify your claim: If \mathscr{I} and \mathscr{T} are σ -algebras on X and Y respectively and $E \in \mathscr{I} \times \mathscr{T}$, then the x-sections $E_x \in \mathscr{T}$ and y-sections $E^y \in \mathscr{I}$ for every $x \in X, y \in Y$.
- 8. State True or False and justify your claim: If (X, \mathscr{I}, μ) and $(Y, \mathscr{T}, \lambda)$ are complete measure spaces, then $(X \times Y, \mathscr{I} \times \mathscr{T}, \mu \times \lambda)$ is also a complete measure space.

$(8 \times 1 = 8$ weightage)

Part B: Answer any two questions from each unit. Each carries 2 weightage

Unit 1

- 9. Let (X, \mathcal{M}, μ) be a measure space and $f : X \to \mathbb{C}$ be a complex-valued measurable function. Then what you mean by $\int_X f d\mu$. Give all the details.
- 10. State Urysohn's Lemma. Give a simple proof in the case of a metric space.
- 11. (a) Does there exist a sequence of nonnegative measurable functions f_n such that

$$\int_X (\liminf f_n) d\mu < \liminf \int_X f_n d\mu$$

(b) Does there exist a sequence of nonnegative measurable functions f_n such that

$$\int_{X} (lim inf f_n) d\mu > lim inf \int_{X} f_n d\mu.$$
Unit 2

12. Show that there exists a subset of \mathbb{R} that is not Lebesgue measurable.

- 13. Show that there exists an uncountable subset of \mathbb{R} with Lebesgue measure 0.
- 14. Using Radon-Nikodym Theorem, establish the polar representation of a complex measure μ .

Unit 3

- 15. Show that there exists a function f on the product space $X \times Y$ such that f^x is \mathscr{T} -measurable and f_y is \mathscr{I} -measurable for every $x \in X, y \in Y$, but f is not $\mathscr{I} \times \mathscr{T}$ -measurable.
- 16. Show that the identity,

$$\int d\mu(x) \int f(x,y) d\lambda(y) = \int d\lambda(y) d\mu(x) \int f(x,y)$$

need not hold even if the two iterated integrals exist and finite.

17. If m_l denotes the Lebesgue measure on \mathbb{R}^l for $l \in \mathbb{N}$ and if k = r + s, then show that m_k is the completion of $m_r \times m_s$.

 $(6 \times 2 = 12 \text{ weightage})$

Part C: Answer any two questions. Each carries 5 weightage

- 18. (a) Introduce $L^{1}(\mu)$ and show that it is a vector space. Give an example for a positive linear functional on $L^{1}(\mu)$, using the integration. Give all the details.
 - (b) State and prove Lebesgue Dominated Convergence Theorem.
- 19. (a) State Riesz Representation Theorem for positive linear functionals on $C_c(X)$ where X is a locally compact Hausdorff space. Prove the uniqueness part.
 - (b) Introduce a measure space (X, \mathcal{M}, μ) such that $\int_X f d\mu$ becomes an infinite sum for complex-valued measurable functions f defined on X.
- 20. Suppose f is a complex measurable function on X, $\mu(A) < \infty$, f(x) = 0 if $x \notin A$ and $\epsilon > 0$. Show that there exists a continuous function g on X with compact support such that

$$\mu(\{x:f(x)\neq g(x)\})<\epsilon \quad \text{and} \quad \sup_{x\in X}|g(x)|\leqslant \sup_{x\in X}|f(x)|.$$

21. State and prove Fubini's theorem. Show that σ -finiteness assumption cannot be dropped.

($2 \times 5 = 10$ weightage)