THIRD SEMESTER M. Sc. DEGREE EXAMINATION, NOVEMBER 2020 MATHEMATICS FMTH3C14- PDE AND INTEGRAL EQUATIONS

Time: Three Hours Maximum Weightage: 30

Part A: Answer *all* **questions. Each carries** *one* **weightage.**

- 1. Define quasilinear partial differential equation. Give an example.
- 2. Show that there are infinitely many solutions for the Cauchy problem

 $u_x + u_y = 1$, $u(x, x) = x$.

3. Show that the following equation is hyperbolic:

 $u_{xx} + 6u_{xy} - 16u_{yy} = 0.$

- 4. Write d'Alembert's formula for the one dimensional homogenous wave equation.
- 5. Let u(x, t) be a solution of the wave equation $u_{tt} c^2 u_{xx} = 0$, which is defined in the whole plane. Assume that *u* is constant on the line $x = 2 + ct$. Prove that $u_t + cu_x = 0$.
- 6. Define Dirichlet problem and Neumann Problem.
- 7. Write Fredholm equation.
- 8. Define Kernel of an integral equation.

(8 × 1 = 8 weightage)

Part B: Answer any *two* **questions from each unit. Each carries** *two* **weightage.**

Unit 1

- 9. Using method of characteristic solve $u_x + u_y = 2$ subject to the initial condition $u(x, 0) = x^2$.
- 10. Solve the eikonal equation $u_x^2 + u_y^2 = n^2$, where the surface $u = c$, are the wavefronts, and *n* is the refraction index of the medium.
- 11. Prove that the type of a linear second-order PDE in two variables is invariant under a change of coordinates.

Unit 2

12. Solve $u_{tt} - 4u_{xx} = 0$; $0 < x < 1$; $t > 0$

$$
u_x(0,t) = u_x(1,t) = 0; \quad t \ge 0,
$$

$$
u(x,0) = f(x) = \cos^2 \pi x; \quad 0 \le x \le 1,
$$

$$
u_t(x,0) = g(x) = \sin^2 \pi x \cos \pi x; \quad 0 \le x \le 1.
$$

(P.T.O.)

- 13. Solve the equation $u_t = 17u_{xx}$; $0 < x < \pi$; $t > 0$; with the boundary conditions $u(0,t) = u(\pi, t) = 0$; $t \ge 0$, and the initial conditions $u(x, 0) = \begin{cases} 0 \\ 2 \end{cases}$ \overline{c}
- 14. Let D be a bounded domain, and let $u(x, y) \in C^2(D) \cap C(\overline{D})$ be a harmonic function in D. Then prove that the maximum of u in \overline{D} is achieved on the boundary ∂D .

Unit 3

- 15. Prove that $\int_{0}^{x} \int_{0}^{x}$ $\int_{a}^{x_n} ... \int_{a}^{x_3} \int_{a}^{x_2} f(x_1)$ a X a X $\int_{a}^{x} \int_{a}^{x_{n}} ... \int_{a}^{x_{3}} \int_{a}^{x_{2}} f(x_{1}) dx_{1} dx_{2} ... dx_{n-1} dx_{n} = \frac{1}{(n-1)!}$ $\frac{1}{(n-1)!} \int_{a}^{x} (x - \xi)^{n-1} f$ a
- 16. Solve d^2 d $y(0) = 1, y'(0)$ ł
- 17. Solve $\mathcal{L} y = y''$, $y(0) = y(1) = 0$.

(6 × 2 = 12 weightage)

Part C: Answer any *two* **questions. Each carries** *five* **weightage.**

- 18. (a) Solve the equation $u_x + 3y^{2/3}u_y = 2$ subject to the initial condition
	- $u(x, 1) = 1 + x$.

(b) Solve the equation $(y + u)u_x + yu_y = x - y$ subject to the initial conditions $u(x, 1) = 1 + x.$

19. Suppose that $L[u] = au_{xx} + 2bu_{xy} + cu_{yy} + du_x + eu_y + fu = g$ is hyperbolic in a domain D. There exists a coordinate system (ξ, η) in which the equation has the canonical form $w_{\xi\eta}$ + $l[w]$ = $G(\xi, \eta)$, where $w(\xi, \eta) = u(x(\xi, \eta), y(\xi, \eta))$, l_1 is a first-order linear differential operator and G is a function which depends on $L[u] = au_{xx} + 2bu_{xy} + cu_{yy} +$ $du_x + eu_y + f_u = g.$

20. Solve the heat conduction problem

- (a) $u_t k u_{xx} = 0$; $0 < x < L, t > 0$,
- (b) $u(0, t) = u(L, t) = 0$; $t \ge 0$,
- (c) $u(x, 0) = f(x)$; $0 \le x \le L$
- 21. Solve the Laplace equation in the rectangle $0 \lt x \lt b$, $0 \lt y \lt d$, subject to the Dirichlet boundary conditions $u(0, y) = f(y)$; $u(b, y) = g(y)$; $u(x, 0) = 0$; $u(x, d) = 0$.

 $(2 \times 5 = 10$ weightage)