Reg.	No.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2020 MATHEMATICS

FMTH3C11 - MULTIVARIABLE CALCULUS AND GEOMETRY

Time: 3 Hours

Maximum Weightage: 30

Part A: Answer all questions. Each carries 1 weightage.

- 1. Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be defined by $f(\mathbf{x}) = \mathbf{x}$, for every \mathbf{x} . Show that $f'(\mathbf{x}) = I$, the identity operator in $L(\mathbb{R}^n)$.
- 2. Define a contraction map and give an example.
- 3. State inverse function theorem.
- 4. Is $\gamma(t) = (t^2, t^4)$, a parametrisation of the parabola $y = x^2$? Justify your claim.
- 5. Prove that the curvature of a straight line is zero.
- 6. Calculate the arc length of the logarithmic spiral $\gamma(t) = (e^t \cos t, e^t \sin t)$, starting at the point (1, 0).
- 7. Define Weingarten map.
- 8. Find the first fundamental form of the surface $\sigma(u, v) = (u v, u + v, u^2 + v^2)$.

 $(8 \times 1 = 8 \text{ Weightage})$

Part B: Answer any two questions from each unit. Each carries 2 weightage.

Unit 1

- 9. If $f(x,y) = \begin{cases} \frac{xy}{x^2+y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$, prove that $D_1 f(x,y)$ and $D_2 f(x,y)$ exist at every point of \mathbb{R}^2 , but f is not continuous at (0,0).
- 10. Prove that a linear operator A on a finite dimensional vector space X is one-to-one if and only if the range of A is X.
- 11. Suppose that f maps a convex open set $E \subseteq \mathbb{R}^n$ into \mathbb{R}^m and f is differentiable on E. If $f'(\mathbf{x}) = 0$ for every $\mathbf{x} \in E$, then prove that f is a constant function.

Unit 2

- 12. Show that a parametrised curve has a unit speed re-parametrisation if and only if it is regular.
- 13. Find the torsion of a circular helix, $\gamma(\theta) = (a \cos \theta, a \sin \theta, b\theta); \theta \in \mathbb{R}$ and a, b constants.
- 14. Let $f : S_1 \to S_2$ be a smooth map between surfaces and $p \in S_1$. Prove that the derivative $D_p f : T_p S_1 \to T_{f(p)} S_2$ is a linear map.

Unit 3

15. With usual notations, prove that the mean curvature is

$$H = \frac{LG - 2MF + NE}{2(EG - F^2)}$$

- 16. If k_1 and k_2 are principal curvatures of a surface, then prove that the mean and Gaussian curvatures are given by $H = \frac{1}{2}(k_1 + k_2)$.
- 17. Prove that a curve on surface is a geodesic if and only if its geodesic curvature is zero everywhere.

 $(6 \times 2 = 12 \text{ Weightage})$

Part C: Answer any two questions. Each carries 5 weightage.

- 18. Let $E \subseteq \mathbb{R}^n$ be an open set and the map $f : E \to \mathbb{R}^k$ be differentiable at $\mathbf{x}_0 \in E$. If g maps an open set containing f(E) into \mathbb{R}^m and g is differentiable at $f(\mathbf{x}_0)$, then prove that the map $F : E \to \mathbb{R}^m$ defined by $F(\mathbf{x}) = g(f(\mathbf{x}))$ is differentiable at \mathbf{x}_0 and $F'(\mathbf{x}_0) = g'(f(\mathbf{x}_0))f'(\mathbf{x}_0)$.
- 19. Let γ be a unit speed curve in \mathbb{R}^3 with constant curvature and zero torsion. Prove that γ is part of a circle.
- 20. Define diffeomorphism and local diffeomorphism. Prove that every diffeomorphism is a local diffeomorphism, but the converse is not true.
- 21. a) Prove that the normal curvature of any curve on a sphere of radius r is $\pm \frac{1}{r}$.

b) Calculate the Gaussian and mean curvature of the surface $\sigma(u, v) = (u+v, u-v, uv)$ at the point (2, 0, 1).

 $(2 \times 5 = 10 \text{ Weightage})$