SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2024 (Regular/Improvement/Supplementary)

STATISTICS FMST2C06-ESTIMATION THEORY

Time: 3 Hours

Maximum Weightage: 30

Part A: Answer any *four* questions. Each carries 2 weightage.

- 1. Define sufficiency. Let $X_1, X_2, ..., X_n$ is a random sample from a population having pdf $f(x) = e^{-(x-\theta)}, x > \theta$. Find a sufficient statistic for θ .
- 2. Define complete family of distributions. Is $N(0, \sigma^2)$ a complete family of distribution?
- 3. Describe method of percentile for finding consistent estimator.
- 4. Define consistency. Give an example to show that a consistent estimator need not be unbiased.
- 5. Explain method of moments. Find the moment estimator of θ in B(1, θ).
- 6. Explain the concept of shortest expected length confidence interval.
- 7. What do you mean by a pivot in confidence estimation? Give an example.

$(4 \times 2 = 8 \text{ weightage})$

Part B: Answer any *four* questions. Each carries 3 weightage.

- 8. a) If T is a complete statistic show that any one to one function of T is also complete.
 b) Let T be a UMVUE of g(θ), and U be an unbiased estimator of *zero* then show that T is UMVUE if and only if Cov (T, U)= 0.
- 9. a) State and prove Cramer Rao inequality.
 b) Find CRLB for the variance of an unbiased estimator of *θ* in sampling from N(*θ*, 1).
- 10. Show that for distribution belonging to one parameter exponential family, the MLE is CAN for θ with asymptotic variance $\frac{1}{nI(\theta)}$.
- 11. a) Explain the method of selecting between consistent estimators.

b) Show that $\frac{n\bar{x}}{n+1}$ is consistent for λ in the case of Poisson population P(λ).

- 12. Explain maximum likelihood estimation. If X follows hyper geometric distribution H(x: n, M, N), find the MLE of N if n and M are known.
- 13. Show that under certain regularity conditions the maximum likelihood estimator is consistent and asymptotically normal.

D2AST2301

$(4 \times 3 = 12 \text{ weightage})$

Part C: Answer any two questions. Each carries 5 weightage.

- 15. a) Let $X_1, X_2, ..., X_n$ is a random sample from $N(\mu, \sigma^2)$ population. Find sufficient statistic for: (i) μ when σ^2 is known; (ii) σ^2 when μ is known; (iii) μ and σ^2 when both are unknown.
 - b) State and prove Basu's theorem.
- 16. a) State and prove Invariance property of CAN estimator.

b) Examine the consistency of sample mean and sample median as an estimator of θ in the case of a Cauchy distribution $f_{\theta}(x) = \frac{1}{\pi} \frac{1}{1 + (x - \theta)^2}, -\infty < x < \infty$.

17. a) Show that the Bayes estimator of θ under the absolute error loss function is the median of the posterior distribution.

b) A random sample of size n is taken from Poisson (λ) population with λ has an exponential distribution with mean unity. Find the Bayes estimator of λ under squared error loss function.

18. a) Let $X_1, X_2, ..., X_n$ be a random sample from U $(0, \theta)$. Obtain an unbiased confidence interval for θ .

b) Find a confidence interval with confidence coefficient $(1-\alpha)$ for the difference between means of two normal populations with common unknown variance.

$(2 \times 5 = 10 \text{ weightage})$