D2AMT2301

Reg.No.....

Name:

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2024 (Regular/Improvement/Supplementary) MATHEMATICS FMTH2C06: GALOIS THEORY

Time : 3 Hours

Maximum Weightage: 30

Part A

Answer *all* questions. Each carries 1 weightage.

- 1. If $\alpha = \sqrt{\frac{1}{3} + \sqrt{7}}$, then determine deg (α, \mathbb{Q}) .
- 2. If α and β are constructible real numbers then prove that $\alpha + \beta$ is a constructible real number.
- 3. Does the polynomial $x^3 2$ split in $\mathbb{Q}(\sqrt{2})$? Justify your answer.
- 4. Find all conjugates in \mathbb{C} of $\sqrt{1+\sqrt{2}}$ over $\mathbb{Q}(\sqrt{2})$.
- 5. Define Frobenius automorphism.
- 6. State Isomorphic Extension Theorem.
- 7. Let K be a finite normal extension of a field F, and let $F \leq E \leq K \leq \overline{F}$. Prove that K is a finite normal extension of E.
- 8. Find the cyclotomic polynomial $\Phi_8(x)$ over \mathbb{Q} .

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer any two questions from each unit. Each carries 2 weightage.

Unit I

- 9. State and prove Fundamental Theorem of Algebra.
- 10. Prove that $\mathbb{Q}(2^{\frac{1}{2}}, 2^{\frac{1}{3}}) = \mathbb{Q}(2^{\frac{1}{6}}).$
- 11. Find the degree and a basis of $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{18})$ over \mathbb{Q} .

(P.T.O.)

Unit II

- 12. Prove that the set of all automorphisms of a field E is a group under function composition.
- 13. If E is an algebraic extension of a field F, then prove that two algebraic closures \overline{F} and \overline{E} of F and E respectively are isomorphic.
- 14. If E is a finite extension of F, then prove that $\{E : F\}$ divides [E : F].

Unit III

- 15. Let K be a finite extension of degree n of a finite field F of p^r elements. Prove that G(K/F) is cyclic of order n.
- 16. Let F be a field of characteristic zero, and let $F \leq E \leq K \leq \overline{F}$, where E is a normal extession of F and K is an extension of F by radicals. Prove that G(E/F) is a solvable group.
- 17. Is the polynomial $x^5 1$ is solvable by radicals over \mathbb{Q} ? Justify your answer.

 $(6 \times 2 = 12 \text{ weightage})$

Part C Answer any two questions. Each carries 5 weightage.

- 18. (a) Let E be a simple extension $F(\alpha)$ of a field F, and let α be algebraic over F. Let the degree of $irr(\alpha, F)$ be $n \ge 1$. Show that every element β of $E = F(\alpha)$ can be uniquely expressed in the form $\beta = b_0 + b_1\alpha + \dots + b_{n-1}\alpha^{n-1}$, where the b_i are in F.
 - (b) Prove the existence of finite field $\mathbf{GF}(p^n)$ for every prime power p^n .
- 19. (a) State and prove Conjugation Isomorphism Theorem.
 - (b) Prove that complex zeros of polynomials with real coefficients occur in conjugate pairs.
- 20. (a) What is the order of $G(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q})$?
 - (b) Prove that every finite field is perfect.
- 21. Let K be the splitting field of $x^4 + 1$ over \mathbb{Q} .
 - (a) Prove that:
 - i. Show that $[K : \mathbb{Q}] = 4$
 - ii. $G(K/\mathbb{Q})$ is isomorphic to Kline 4-group.
 - (b) Find an intermediate field E with $\mathbb{Q} \leq E \leq K$ such that $[E : \mathbb{Q}] = 2$.

 $(2 \times 5 = 10 \text{ weightage})$