(2 Pages)

Name
Reg.No

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2024 (Regular/Improvement/Supplementary)

CHEMISTRY FCHE2C05: GROUP THEORY AND CHEMICAL BONDING

Time: 3 Hours

Maximum Weightage: 30

Section A: Short answer questions. Answer any *eight* questions. Each carries 1 weightage.

- 1. Explain the term abelian group. Write one example.
- 2. What are subgroups and classes of a group?
- 3. Show that 120° and 240° rotations are conjugate elements of C_{3v} point group.
- 4. Define S_5 axis of symmetry. Find the distinct operations generated by S_5 axis.
- 5. Explain the term "block diagonalization".
- 6. Determine the point group of B(OH)₃ assuming that it is a planar molecule.
- 7. What are group orbitals? Give example.
- 8. Give group theoretical explanation for Laporte selection rule.
- 9. What is the term symbol for the first exited state of H₂ molecule.
- 10. State and explain non-crossing rule.
- 11. Write the normalized functions of sp hybridization.
- 12. What is Frost-Huckel circle mnemonic device for cyclic polyenes.

$(8 \times 1 = 8 \text{ weightage})$

Section B: Short essay questions. Answer any *four* questions. Each carries 3 weightage.

- 13. Explain the rules associated with direct product and direct sum of square matrices.
- 14. Set up group multiplication table of C_{2h} point group.
- 15. H_2O belongs to C_{2v} point group. Find the group orbitals involved bonding with O atom orbitals.
- 16. Rationalize rule of mutual exclusion principle using group theory.
- 17. Discuss the MO treatment of CO and NO.

- 18. Write the Hückel determinant of 1,3–butadiene. Obtain HMO coefficients.
- 19. Apply HMO method to find π -molecular orbitals and their energy values for allyl cation.

 $(4 \times 3 = 12 \text{ weightage})$

Section C: Essay questions. Answer any two questions. Each carries 5 weightage.

- 20. State Great Orthogonality Theorem. Using this derive C_{2v} character table. Also include the IR corresponding to the vectors x, y, z and their products.
- 21. Predict the hybridization in BF_3 and obtain the hybrid orbitals by SALC and projection operator method.
- 22. (a) Explain the selection rules for Raman and electronic spectroscopy.(b) Determine the vibrational modes of ammonia molecule.
- 23. Compare VB and MO methods of bonding as applied to H₂. Which is found better? Justify your answer.

 $(2 \times 5 = 10 \text{ weightage})$

Character tables of C_{3v} and D_{3h} point groups

		2C3			
A1	1	1	1	Z	$x^2 + y^2$, z^2
A ₂	1	1	-1	Rz	No. of the second second second
Ε	2	-1	0	$(X, Y), (R_{X}, R_{Y})$	$x^2 + y^2$, z^2 $(x^2 - y^2, xy)$, (xz, yz)

D _{3h}	Е	2 C ₃	3 C ₂ '	σ_{h}	2 S ₃	3 σ _v		
			1					$x^2 + y^2, z^2$
A2'	1	1	-1	1	1	-1	Rz	
E'	2	-1	0	2	-1	0	(x, y)	(x ² – y ² , xy)
A,″	1	1	1	-1	-1	-1		
A2″	1	1	-1	-1	-1	1	z	
Ε″	2	-1	0	-2	1	0	(R _x , R _y)	(xz, yz)