D2AMT2202

(2 Pages)

Name.....

Reg.No.....

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2023 (Regular/Improvement/Supplementary) MATHEMATICS FMTH2C07 - REAL ANALYSIS II

Time: 3 Hours

Maximum weightage: 30

Part A

Answer all questions. Each carries 1 weightage.

- 1. Show that the translate of a measurable set is measurable.
- 2. Show that a monotone function that is defined on an interval is measurable.
- 3. Give an example for a bounded function on a closed and bounded interval which is Lebesgue integrable but not Riemann integrable.
- 4. Let $\{u_n\}$ be a sequence of nonnegative measurable functions on E and let $f = \sum_{n=1}^{\infty} u_n$ pointwise a.e. on E. Show that $\int_E f = \sum_{n=1}^{\infty} \int_E u_n$.
- 5. Let f be integrable over E. Show that for each $\epsilon > 0$ there is a set of finite measure E_0 for which $\int_{E\sim E_0} |f| < \epsilon$.
- 6. Show that an increasing function on a closed and bounded interval [a, b] is of bounded variation on [a, b].
- 7. Show that a Lipschitz on a closed and bounded interval [a, b] is absolutely continuous on [a, b].
- 8. Show that every Cauchy sequence has a rapidly Cauchy subsequence.

(8x1 = 8 weightage)

Part B

Answer any two questions from each unit. Each carries 2 weightage.

Unit 1

- 9. Show that the outer measure is countably subadditive.
- 10. State and prove the Borel-Cantelli lemma.
- 11. Let f be a real-valued measurable function on E. Show that for each $\epsilon > 0$ there is a continuous function g on \mathbb{R} and a closed set F contained in E for which f = g on F and $m(E \sim F) < \epsilon$.

(P.T.O.)

Unit 2

- 12. State and prove Chebychev's inequality.
- 13. Let *E* be of finite measure. Suppose the sequence of functions $\{f_n\}$ is uniformly integrable over *E* and $\{f_n\} \to f$ pointwise a.e. on *E*. Show that *f* is integrable over *E* and $\lim_{n\to\infty} \int_E f_n = \int_E f$.
- 14. Show that if $\{f_n\} \to f$ in measure on E, then there is a subsequence $\{f_{n_k}\}$ that converges pointwise a.e. on E to f.

Unit 3

- 15. Show that a monotone function on an open interval is continuous except possibly at a countable number of points.
- 16. Show that a function f on a closed and bounded interval [a, b] is absolutely continuous on [a, b] if and only if it is an indefinite integral over [a, b].
- 17. State and prove the Riesz-Fischer theorem.

(6x2 = 12 weightage)

Part C Answer any *two* questions. Each carries 5 weightage.

18. (a) Define a σ -algebra.

(b) Show that the collection \mathcal{M} of measurable sets is a σ -algebra.

- 19. (a) Let $\{f_n\}$ be a sequence of measurable functions on a measurable set E that converges pointwise a.e. on E to the function f. Show that f is measurable.
 - (b) Show that an extended real-valued function f on a measurable set E is measurable if and only if there is a sequence $\{\varphi_n\}$ of simple functions on E which converges pointwise on E to f and has the property that $|\varphi_n| \leq |f|$ on E for all n.
- 20. Let f and g be bounded measurable functions on a set of finite measure E.
 - (a) Show that for any real numbers α and β , $\int_E (\alpha f + \beta g) = \alpha \int_E f + \beta \int_E g$.
 - (b) Show that if $f \leq g$ on E, then $\int_E f \leq \int_E g$.
- 21. Show that a monotone function defined on an open interval (a, b) is differentiable almost everywhere on (a, b).

(2x5 = 10 weightage)