D2AMT2201

Name.....

Reg. No.

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2023 (Regular/Improvement/Supplementary) MATHEMATICS FMTH2C06: GALOIS THEORY

Time : 3 Hours

Maximum Weightage: 30

Part A

Answer all questions. Each carries 1 weightage

- 1. Show that $\sqrt{1+\sqrt[3]{2}}$ is algebraic over \mathbb{Q} .
- 2. Is \mathbb{C} a simple extension over \mathbb{R} ? Justify your answer.
- 3. Find the number of primitive 18th roots of unity in GF(19).
- 4. Let $\sigma : \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{2})$ be defined by $\sigma(a + b\sqrt{2}) = 1 + b\sqrt{2}$, where $a, b \in \mathbb{Q}$. Verify whether σ is an automorphism of $\mathbb{Q}(\sqrt{2})$.
- 5. What is the order of $G(\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3})/\mathbb{Q}(\sqrt[3]{2}))$?
- 6. Define separable extension of a field. Give a separable extension of \mathbb{Q} .
- 7. Is regular 18-gon is constructible? Justify your answer.
- 8. Define symmetric function in three variables y_1, y_2, y_3 .

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer any two questions from each unit. Each carries 2 weightage

Unit I

- 9. Prove that trisecting the angle is impossible.
- 10. Let α be a zero of $x^2 + x + 1 \in \mathbb{Z}_2[x]$. Show that there exist a field $\mathbb{Z}_2(\alpha)$ of four elements.

(P.T.O.)

11. Show that a field \mathbf{F} is algebraically closed if and only if every non constant polynomial in $\mathbf{F}[\mathbf{x}]$ factors into linear factors in $\mathbf{F}[\mathbf{x}]$.

Unit II

- 12. Prove that complex zeros of polynomials with real coefficients occur in conjugate pairs.
- 13. Determine the spliting field and its degree over \mathbb{Q} of $x^4 + x^2 + 1$.
- 14. Prove that every finite field is perfect.

Unit III

- 15. Prove that $x^5 1$ is solvable by radicals over \mathbb{Q} .
- 16. Prove that the Galois group of the p^{th} cyclotomic extension of \mathbb{Q} for a prime p is cyclic of order p-1.
- 17. Let **F** be a field of characteristic zero, and let $a \in \mathbf{F}$. Prove that if **K** is the splitting field of $x^n a$ over **F**, then $G(\mathbf{K}/\mathbf{F})$ is a solvable group.

 $(6 \times 2 = 12 \text{ weightage})$

Part C Answer any two questions. Each carries 5 weightage

- 18. (a) Show that if **E** is finite extension field of a field **F**, and **K** is a finite extension field of **E**, then **K** is a finite extension of **F**, and $[\mathbf{K} : \mathbf{F}] = [\mathbf{K} : \mathbf{E}][\mathbf{E} : \mathbf{F}].$
 - (b) Show that if \mathbf{E} is a finite extension of \mathbf{F} , then $\{\mathbf{E} : \mathbf{F}\}$ divides $[\mathbf{E} : \mathbf{F}]$.
- 19. (a) Let p be a prime and let $n \in \mathbb{Z}^+$. If **E** and **E'** are fields of order p^n , then show that $\mathbf{E} \simeq \mathbf{E'}$.
 - (b) Let **F** be a field of characteristic p. Prove that the map $\sigma_p : \mathbf{F} \to \mathbf{F}$ defined by $\sigma_p(a) = a^p$ is an automorphism. Also, prove that $\mathbf{F}_{\{\sigma_p\}} = \mathbb{Z}_p$.
- 20. State and prove Isomorphism Extension Theorem.
- 21. Let **K** be a finite normal extension of a field **F** with Galois group $G(\mathbf{K}/\mathbf{F})$. For each intermediate field **E** with $\mathbf{F} \leq \mathbf{E} \leq \mathbf{K}$. Let $\lambda(\mathbf{E}) = G(\mathbf{K}/\mathbf{E})$. Prove that
 - (a) The fixed field of $\lambda(\mathbf{E})$ in **K** is **E**.
 - (b) λ is one to one.
 - (c) For $\mathbf{H} \leq G(\mathbf{K}/\mathbf{F}), \lambda(\mathbf{K}_{\mathbf{H}}) = \mathbf{H}.$
 - (d) **E** is a normal extension of **F** if and only if $\lambda(\mathbf{E})$ is a normal subgroup of $G(\mathbf{K}/\mathbf{F})$.

 $(2 \times 5 = 10 \text{ weightage})$