(2 Pages)

Name
Reg.No

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2022 (Regular/Improvement/Supplementary)

MATHEMATICS FMTH2C10: OPERATIONS RESEARCH

Time: 3 Hours

Maximum Weightage: 30

Part A: Answer all questions. Each carries 1 weightage.

- 1. Show that the sum of two convex functions is again convex.
- 2. What is meant by degeneracy in LP?
- 3. Show that the set of feasible solutions is a convex set.
- 4. The dual of dual is the primal. Prove.
- 5. Prove that if an optimal solution of an LP problem is an integer or mixed integer vector then it is also an optimal solution of the corresponding MILP.
- 6. What is meant by unbalanced transportation problem?
- 7. Show that maxmin $f(X, Y) \le \min x f(X, Y)$ if they exist.
- 8. What is meant by sensitivity analysis?

$(8 \times 1 = 8 \text{ weightage})$

Part B: Answer any two questions from each unit. Each carries 2 weightage.

Unit 1

- 9. Let f(X) be defined in a convex domain $K \subseteq E_n$ and be differentiable. Then show that f(X) is a convex function if and only if $f(X_1) f(X_2) \ge (X_2 X_1)' = \nabla f(X_1)$ for all X_1, X_2 in K.
- 10. Show that a vertex of S_F is a basic feasible solution.
- 11. What is meant by simplex multipliers?

Unit 2

- 12. Show that the optimal value of the primal, if it exists, is equal to the optimal value of its dual.
- 13. Explain the important steps in formulating a LP problem with an example.

(**P.T.O.**)

14. Solve the transportation problem:

	<i>D</i> ₁	<i>D</i> ₂	<i>D</i> ₃	
01	4	5	2	30
02	4	1	3	40
03	3	6	2	20
04	2	3	7	60
	40	50	60	

Unit 3

- 15. Give a general description of branch and bound method.
- 16. Find the maximum flow in the network described below.

Arc	(a, 1)	(a, 2)	(1,2)	(1,3)	(1,4)	(2,4)	(3,2)	(3,4)	(4,3)	(3, <i>b</i>)	(4, b)	
Capacity	[,] 8	10	3	4	2	8	3	4	2	10	9	

17. State and prove the necessary and sufficient condition for the existence of saddle point of f(X, Y).

$(6 \times 2 = 12 \text{ weightage})$

Part C: Answer any two questions. Each carries 5 weightage.

18. Solve the following problem using simplex method. Also solve it by solving the dual graphically.

Maximize $y_1 + y_2 + y_3$

subject to $2y_1 + y_2 + 2y_3 \le 2, 4y_1 + 2y_2 + y_3 \le 2, y_j \ge 0, j = 1,2,3$

19. Solve the following LP using cutting plane method.

Minimise $3x_1 - x_2$

subject to $-10x_1 + 6x_2 \le 15$, $14x_1 + 18x_2 \ge 63$; x_1, x_2 are non-negative integers.

- 20. Show that the maximum flow in a graph is equal to the minimum of the capacities of all possible cuts in it.
- 21. State and prove the fundamental theorem of rectangular games.