(2 Pages)

D2AMT2101

Reg.No.....

Name:

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2022 (Regular/Improvement/Supplementary) MATHEMATICS FMTH2C06: GALOIS THEORY

Time : 3 Hours

Maximum Weightage: 30

Part A

Answer all questions. Each carries 1 weightage.

- 1. If $\alpha = \sqrt{\pi}$, then determine deg $(\alpha, Q(\pi))$.
- 2. Find a basis of $Q(\sqrt{2}, \sqrt{6})$ over $Q(\sqrt{3})$.
- 3. Does there exist a field of 4096 elements? Justify your answer.
- 4. Find all conjugates of $\sqrt{2} + i$.
- 5. Write the splitting field of $\{x^2 2, x^2 3\}$ over Q.
- 6. Show that if $\alpha, \beta \in \overline{F}$ are both separable over a field F, then both $\alpha + \beta$ and $\alpha\beta$ are separable over F.
- 7. Is it true that the regular 18-gon constructible? Justify your answer.
- 8. Define the n^{th} cyclotomic polynomial over a field F.

 $(8 \times 1 = 8 \text{ weightage})$

Part B Answer any two questions from each unit. Each carries 2 weightage.

Unit I

- 9. Prove that a finite extension is an algebraic extension.
- 10. Let E be an algebraic extension of a field F and $\alpha \in E$. Let $irr(\alpha, F)$ denote the irreducible polynomial for α over F. Prove that:
 - (a) If α is algebraic over F, then $F(\alpha)$ is isomorphic to $F[x]/\langle irr(\alpha, F) \rangle$.

(b) If α is transcendental over F then $F(\alpha)$ is isomorphic to the field of rational functions over F.

11. Show that there exists an angle that cannot be trisected with a straightedge and a compass.

(P.T.O.)

Unit II

- 12. Let F be a field of characteristic p. Prove that the map $\sigma_p : F \to F$ defined by $\sigma_p(a) = a^p$ is an automorphism. Also prove that $F_{\{\sigma_p\}} \simeq Z_p$.
- 13. Show that if [E : F] = 2, then E is a splitting field over F.
- 14. Prove that every field of characteristic zero is perfect.

Unit III

- 15. Find the Galois group of $Q(\sqrt{2}, \sqrt{3})$ over Q.
- 16. Prove that the Galois group of the p^{th} cyclotomic extension of Q for a prime p is cyclic of order p 1.
- 17. Let F be a field of charectristic 0, and let $a \in F$. If K is the spliting field of $x^n a$ over F and F contains all the n^{th} roots of unity, then prove that that G(K/F) is a solvable group.

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any two questions. Each carries 5 weightage.

- 18. (a) Let E be a finite extension of degree n over a finite field F. If F has q elements then prove that E has q^n elements.
 - (b) Show that every finite extension of a finite field is a simple extension.
 - (c) Find all primitive 10^{th} roots of unity in Z_{11} .
- 19. State and Prove Isomorphism Extension Theorem.
- 20. (a) Define the index $\{E : F\}$ of E over F.
 - (b) Let E be finite extension of a field F. Let σ be an isomorphism of F onto a field F' and let $\overline{F'}$ be an algebraic closure of F'. Prove that the number of extensions of σ to an isomorphism τ of E onto a subfield of $\overline{F'}$ is finite and independent of F', $\overline{F'}$ and σ .
- 21. Let K be a finite normal extension of a field F, and let $F \leq E \leq K \leq \overline{F}$. Prove that:
 - (a) K is a finite normal extension of E.
 - (b) For $\sigma, \tau \in G(K/F)$, the restrictions $\sigma | E = \tau | E$ if and only if σ and τ are in the same left coset of G(K/E) in G(K/F).
 - (c) The fixed field of G(K/E) in K is E.

$(2 \times 5 = 10 \text{ weightage})$