(1 Page)

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2021 STATISTICS

FMST2C09: DESIGN AND ANALYSIS OF EXPERIMENTS

Time: 3 Hours

Maximum Weightage: 30

Part A: All questions can be answered. Each carries two weightage (Ceiling 6 weightage).

- 1. Explain the role of randomization and replication in design of experiments.
- 2. Discuss the regression approach to the analysis of variance.
- 3. Write down the model of a Graeco Latin Square Design. Also give an example plan of it.
- 4. Derive the expression for the expected value of the mean squares in Randomized Block Design.
- 5. Construct a BIBD with v = 16, b = 20, k = 4, r = 5 and $\lambda = 1$.
- 6. State and prove the parametric relations in PBIBD.
- 7. Distinguish between complete and partial confounding. Give an example each.

Part B: All questions can be answered. Each carries four weightage (Ceiling 12 weightage).

- 8. Explain Kruskal Wallis test.
- 9. If Y_1 , Y_2 , Y_3 , Y_4 are independent random variables with common variance σ^2 and

 $E(Y_1) = E(Y_2) = \theta_1 + \theta_2$ and $E(Y_3) = E(Y_4) = \theta_1 + \theta_3$. Show that $\theta_1 + \theta_2$ and $2\theta_1 + \theta_2 + \theta_3$ are estimable. Find their best estimates.

- 10. Write down the model and explain in detail the analysis of a design in which no local control is used.
- 11. Briefly describe the analysis of Latin square design.
- 12. State and prove Fisher's inequality.
- 13. Explain how various blocks are formed in Lattice design.
- 14. Analyse the 2^3 factorial design with ANOVA table.

Part C: All questions can be answered. Each carries six weightage (Ceiling 12 weightage).

15. Let the model equations be $y_1 = 2\alpha_1 + 3\alpha_2 + e_1$, $y_2 = 3\alpha_1 + 4\alpha_2 + e_2$ and $y_3 = 4\alpha_1 + 5\alpha_2 + e_3$.

Find the class of estimable parametric functions and their best estimates.

- 16. Distinguish between intra block and inter block analysis of BIBD.
- 17. Explain the analysis of a 3^2 factorial experiment with *r* replications.
- 18. Explain the analysis of a split plot design.