(2 PAGES)

Reg. No.

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2021 STATISTICS FMST2C08: PROBABILITY THEORY

Time: Three Hours

Maximum Weightage: 30

Part A: All questions can be answered. Each carries two weightage. (Ceiling 6 weightage).

- 1. Define random variable. Prove that sum of two random variables on a probability space is again a random variable on that probability space.
- 2. Prove that the distribution function of a random variable is right continuous.
- 3. Does convergence in distribution implies convergence in probability? Justify your answer.
- 4. Examine whether WLLN holds for a sequence $\{X_n\}$ of independent random variables, where

$$P(X_n = 2^n) = \frac{1}{2} = P(X_n = -2^n), \quad n \ge 1$$

- 5. Define characteristic function. Is $\phi(t) = \cos t$, $t \in \mathcal{R}$; a characteristic function? Justify your answer.
- 6. What is central limit problem? Define any one form.
- 7. State Radan-Nikodym theorem. What is its significance in probability theory?

Part B: All questions can be answered. Each carries four weightage. (Ceiling 12 weightage).

8. If F is a distribution function prove that F can be uniquely decomposed as:

$$F = \alpha F_d + (1 - \alpha)F_c, \ 0 < \alpha < 1,$$

where F_d is a discrete distribution function and F_c a continuous distribution function.

9. Define tail events. State and prove Kolmogorov 0 - 1 law.

(PTO)

10. Define weak convergence of a sequence of distribution functions. Let $\{F_n\}$ be a sequence of distribution functions such that

$$F_n(x) = \begin{cases} 0, & \text{if } x \le 0, \\ x^n, & \text{if } 0 < x \le 1, \\ 1, & \text{if } x > 1 \end{cases}$$

Examine whether $\{F_n\}$ converges weakly. Identify the limit if it exists.

- 11. State and prove necessary and sufficient condition for almost sure convergence of a series of independent random variables as suggested by Kolmogorov.
- 12. State and prove the inversion theorem on characteristic functions.
- 13. State Liapunov's form of central limit theorem. Examine whether Liapunov's conditions are satisfied by the sequence X_n , where

$$P(X_n = n) = \frac{1}{2\sqrt{n}} = P(X_n = -n)$$
$$P(X_n = 0) = 1 - \frac{1}{\sqrt{n}} \quad n = 1, 2, \dots$$

14. Define conditional expectation. Discuss the smoothing properties of conditional expectation.

Part C: All questions can be answered. Each carries six weightage. (Ceiling 12 weightage).

- 15. a) Define probability measure induced by a random variable X. Show that it satisfies all the axioms of probability.
 - b) Describe independence of random variables. If X and Y are independent random variables and $g: \mathcal{R} \to \mathcal{R}$ is a continuous function, prove that g(X) and g(Y) are independent.
- 16. a) Define almost sure convergence and convergence in probability. Prove that almost sure convergence implies convergence in probability.
 - b) State and prove Kolmogrov's SLLN.
- 17. a) State and prove Helly-Bray lemma.
 - b) Examine whether central limit theorem holds for the sequence $\{X_n\}$ of independent random variables with probability mass function:

$$P(X_n = n) = \frac{1}{2n^3} = P(X_n = -n)$$
$$P(X_n = 0) = 1 - \frac{1}{n^3} \quad n = 1, 2, \dots$$

- 18. a) Prove that $E(X + Y|\mathcal{B}) = E(X|\mathcal{B}) + E(Y|\mathcal{B})$
 - b) Let $\{X_n\}$ be a martingale and g(.) be a convex function on \mathcal{R} . Show that $\{g(X_n)\}$ is a sub-martingale provided $E(g(X_n)) < \infty$ for $n \ge 1$.