(2 PAGES)

Reg.	No.	•	•••	•	•	•	•	•	•	•		•	•	•	
Nam	e														

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2021 STATISTICS

FMST2C06: ESTIMATION THEORY

Time: Three Hours

Maximum Weightage: 30

Part A: All questions can be answered. Each carries two weightage. (Ceiling 6 weightage).

- 1. Give an example of an ancillary statistics and a complete statistics.
- 2. What do you mean by a sufficient statistics? Obtain a sufficient statistics for σ^2 in $N(0, \sigma^2), \sigma^2 > 0.$
- 3. What do you mean by BLUE? Give an example.
- 4. Examine whether sample median is a CAN estimator for μ in the Cauchy population $C(\mu, \sigma), \mu \in \mathbb{R}, \sigma > 0.$
- 5. What do you mean by an exponential family of densities? Give an example.
- 6. What do you mean by a pivotal quantity? Give an example.
- 7. Define Fisher information. Derive the Fisher information contained in a sample of size n from a Poisson distribution with mean λ .

Part B: All questions can be answered. Each carries four weightage. (Ceiling 12 weightage).

- 8. State and prove Cramer-Rao inequality.
- 9. Obtain UMVUE of $\mu^2 + 1$ in $N(\mu, 1), \mu \in R$ based on a sample of size n.
- 10. Obtain the MLE and moment estimator of θ in $U(0, \theta)$, $\theta > 0$.
- 11. If T is a consistent estimator of θ and g is a continuous function, show that g(T) is consistent for $g(\theta)$.
- 12. What do you mean by shortest confidence interval? Obtain the shortest confidence interval for μ in the case of normal population $N(\mu, \sigma^2)$, when both μ and σ^2 are unknown.

- 13. Distinguish between Bayesian and Fiducial confidence intervals.
- 14. State and prove Basu's theorem.

Part C: All questions can be answered. Each carries six weightage. (Ceiling 12 weightage).

- 15. Explain maximum likelihood method of estimation. Show that under some regularity conditions to be stated MLE is a CAN estimator.
- 16. a) State and prove Rao-Blackwell theorem.
 - b) Obtain UMVUE of $1 e^{-\lambda}$, based on a random sample of size n from the Poisson population $\{P(\lambda), \lambda > 0\}$.
- 17. a) What do you mean by one parameter Cramer family? Give an example
 - b) State and prove Cramer-Huzurbazar theorem.
- 18. a) What do you mean by a large sample confidence interval? Obtain confidence interval for the $p_1 p_2$ based on random samples from two independent binomial populations $b(n, p_1)$ and $b(m, p_2)$
 - b) Let X_1 and X_2 be two independent observations from the exponential population with pdf

$$f(x;\theta) = e^{-(x-\theta)}, x > \theta.$$

Let $Y = \min(X_1, X_2)$. Find the confidence coefficient of the interval [Y - 1/2, Y + 1/2].