D2AMT2003

(2 Pages)

SECOND SEMESTER M. Sc. DEGREE EXAMINATION, APRIL 2021 MATHEMATICS FMTH2C08: TOPOLOGY

Time : 3 Hours

Maximum Weightage: 30

Part A: All questions can be answered. Each carries one weightage.

(Ceiling 6 weightage).

- 1. Define metrisable topological space and give an example of a space which is not metrisable.
- 2. Is $\overline{A \cap B} = \overline{A} \cap \overline{B}$. Justify your claim.
- 3. Find the interior of the set of integers, \mathbb{Z} in \mathbb{R} with usual topology.
- 4. Define boundary of a set and find the boundary of $\{2, 3, 5\}$ in \mathbb{R} with discrete topology.
- 5. Define quotient map and give an example.
- 6. Show that the continuous image of a compact space is compact.
- 7. Give an example of a Hausdorff space which is not regular.
- 8. Define saturated sets.

Part B: All questions can be answered. Each carries two weightage.

(Ceiling of 12 weightage)

- 9. In an infinite cofinite topological space, show that a sequence is convergent if and only if there is at most one term of it which repeats infinitely often.
- 10. Let X be a set and \mathcal{B} a family of its subsets covering X. If any $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$, there exists $B_3 \in \mathcal{B}$ such that $x \in B_3 \subset B_1 \cap B_2$, then show that there exists a topology on X with \mathcal{B} as a base.
- 11. Show that the identity function $id_X : (X, \tau_1) \to (X, \tau_2)$ is continuous if and only if τ_1 is stronger than τ_2 .
- 12. Show that the product topology is the weak topology determined by the projection functions.

- 13. Prove that every second countable space is separable.
- 14. Show that every quotient space of a locally connected space is locally connected.
- 15. Show that every continuous, one-to-one function from a compact space into a Hausdorff space is an embedding.
- 16. State and prove Wallace theorem.
- 17. Let $f: X \to [0, 1]$ be continuous. For each $t \in \mathbb{R}$, let $F_t = \{x \in X, f(x) < t\}$. Show that $f(x) = \inf \{t \in \mathbb{Q} : x \in F_t\}$.

Part C: All questions can be answered. Each carries six weightage.

(Ceiling 12 weightage).

- 18. (a). Let (X, τ) be a topological space and S a family of subsets of X. Show that S is a sub-base for τ if and only if S generates τ .
 - (b). Show that $\overline{A} = A \cup A'$, where A is a subset of a topological space X.
- 19 (a). Prove that Metrisability is a hereditary property.
 - (b). Prove that a subset of \mathbb{R} is connected if and only if it is an interval.
- 20 (a). Show that every separable space satisfies the countable chain condition.
 - (b). Show that a subset C is a path-component of a space X if and oly if C is a maximal subset w.r.t. the property of being path-connected.
- 21. (a). Prove that every regular, Lindelöff space is normal.
 - (b). If every continuous real valued function on a closed subset A of a topological space X has a continuous extension to X, then show that X is normal.