(2 PAGES)

Reg.	No.	•	•••	•	•	•	•	•	•	•	•	•	•	•	•
Nam	e:···														

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2021 MATHEMATICS

FMTH2C06: GALOIS THEORY

Time: Three Hours

Maximum Weightage: 30

Part A: All questions can be answered. Each carries one weightage.

(Ceiling 6 weightage).

- 1. Let f(x) be irreducible in F[x]. Then show that all zeros of f(x) in \overline{F} have same multiplicity.
- 2. Find the splitting field of $X^5 1$ over \mathbb{Q} .
- 3. Prove that doubling a cube is impossible.
- 4. Describe the group $G(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q})$.
- 5. Show that $\mathbb{Q}(\sqrt[3]{2})$ has only identity automorphism.
- 6. Find the degree and basis of $\mathbb{Q}(2^{\frac{1}{2}}, 2^{\frac{1}{3}})$ over \mathbb{Q} .
- 7. Prove that a finite extension of a field F is an algebraic extension of F.
- 8. Is $\alpha = \pi^2$ is algebraic over $\mathbb{Q}(\pi^3)$. Justify your answer.

Part B: All questions can be answered. Each carries two weightage.

(Ceiling 12 weightage).

- 9. a) Prove that there exists an angle that cannot be trisected.
 - b) Show that a regular 9-gon is not constructible.
- 10. Prove in detail that $\mathbb{Q}(\sqrt{3}, \sqrt{7}) = \mathbb{Q}(\sqrt{3} + \sqrt{7}).$
- 11. Let E be a simple extension $F(\alpha)$ of a field F, and let α algebraic over F. Let the degree of $irr(\alpha, F)$ be $n \geq 1$. Then prove that every element β in E can be uniquely expressed as a linear combination of $\{1, \alpha, \alpha^2, ..., \alpha^{n-1}\}$ with co-efficients from F.

- 12. Prove that a finite extension of a field of characteristic zero is a simple extension.
- 13. a) State and prove conjugation isomorphism theorem.
 - b) Prove that complex zeros of a polynomial with real coefficients occur in conjugate pairs.
- 14. Show that if [E:F] = 2, Then show that E is a splitting field over F.
- 15. Find $\phi_5(x)$ over \mathbb{Q} .
- 16. a) Check whether regular 60-gon in constructible.
 - b) Define nth cylclotomic polynomial and nth cylclotomic extension over a field F.
- 17. Prove that the Galois group of the *p*th cyclotomic extension of \mathbb{Q} is cyclic of order p-1.

Part C: All questions can be answered. Each carries six weightage.

(Ceiling 12 weightage).

- 18. a) State and prove Kronecker's theorem.
 - b) Construct a field of four elements.
 - c) Prove that $\mathbb{R}[x]/\langle x^2+1\rangle$ is isomorphic to \mathbb{C} .
- 19. State and prove isomorphism extension theorem.
- 20. a) Prove that a finite field $GF(p^n)$ exists for every prime power p^n .
 - b) Let P be a prime and n be a posiive integer, Prove that if E and E' are fields of order p^n then they are isomorphic.
- 21. Let $y_1, y_2, ..., y_5$ be independent transcendental real numbers over \mathbb{Q} . Prove that the polynomial $f(X) = \prod_{i=1}^{5} (x y_i)$ is not solvable by radicals over $F = \mathbb{Q}(s_1, s_2, ..., s_5)$, where s_i is the *i*th elementary symmetric function in $y_1, y_2, ..., y_5$.