D2AMT1904 (S1)

(2 PAGES)

Reg.	No.	• • •	••	•••	•••	••	••	••	
Name	ə:•••								

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2021 (Improvement/Supplementary)

MATHEMATICS

FMTH2C09: ODE & CALCULAS OF VARIATIONS

Time: Three Hours

Maximum Weightage: 30

Part A: Answer all questions. Each carries 1 weightage.

- 1. Classify and locate the singular points on the x axis of the differential equation x(3x+1)y'' (x+1)y' + 2y = 0.
- 2. Determine the nature of the point at $x = \infty$ for the differential equation $x^2y'' + xy' + (x^2 p^2)y = 0$
- 3. Show that $P_n(-x) = (-1)^n P_n(x)$, where $P_n(x)$ denote the n^{th} Legendre polynomial.
- 4. Find the Bessel series of the function f(x) = 1.
- 5. Show that the zeros of the functions $a \sin x + b \cos x$ and $c \sin x + d \cos x$ are distinct and occur alternately whenever $ad bc \neq 0$.
- 6. Explain the different types of critical points of an autonomous system.
- 7. Define isoperimetric problem.
- 8. For what points (x_0, y_0) does Picard's theorem imply that the initial value problem y' = y|y|, $y(x_0) = y_0$ has a unique solution on some interval $|x x_0| \le h$?

Part B: Answer any two questions from each unit. Each carries 2 weightage.

Unit I

- 9. Obtain the power series solution of the equation $(1 x^2)y'' xy' + p^2y = 0$, where p is a constant.
- 10. Find the general solution of Gauss's Hypergeometric equation near its singular point x = 0.
- 11. Derive the Rodrigue's formula for Legendre polynomials.

 $^{(8 \}times 1 = 8 \text{ Weightage}).$

Unit II

12. If W(t) is the Wronskian of the two solutions of the homogeneous system

$$\begin{cases} \frac{dx}{dt} = a_1(t)x + b_1(t)y\\ \frac{dy}{dt} = a_2(t)x + b_2(t)y \end{cases}$$

then show that W(t) is either identically zero or nowhere zero on [a, b].

13. Determine the nature and stability properties of the critical point (0,0) for the system:

$$\begin{cases} \frac{dx}{dt} = 4x - 2y, \\ \frac{dy}{dt} = 5x + 2y. \end{cases}$$

14. Find the general solution of the following system:

$$\begin{cases} \frac{dx}{dt} = -4x - y, \\ \frac{dy}{dt} = x - 2y. \end{cases}$$

Unit III

- 15. Every nontrivial solution of $y'' + (\sin^2 x + 1)y = 0$ has an infinite number of positive zeros. Formulate and prove a theorem that includes this statement as a special case.
- 16. Obtain Euler's differential equation for an extremal.
- 17. Check whether $f(x,y) = xy^2$ satisfies a Lipshitz condition on any rectangle $a \le x \le b$ and $c \le x \le d$.

$$(6 \times 2 = 12 \text{ Weightage}).$$

Part C: Answer any two questions. Each carries 5 weightage.

- a) Solve the ordinary differential equation (1 + x)y' = py with the condition y(0) = 1.
 b) State and prove the orthogonality property of Legendre polynomials.
- 19. Find Frobenius series solution of the equation $xy'' y' + 4x^3y = 0$.
- 20. Find the general solution of Bessel's equation $x^2y'' + xy' + (x^2 p^2)y = 0$, when p is not an integer.
- 21. Explain the Picard's method of successive approximations to solve second order linear differential equation. Solve the following initial value problem by Picard's method:

$$\begin{cases} \frac{dy}{dx} = z, & y(0) = 1, \\ \frac{dz}{dx} = -y, & z(0) = 0. \end{cases}$$

 $(2 \times 5 = 10 \text{ Weightage}).$