(2 Pages)

SECOND SEMESTR M.Sc. DEGREE EXAMINATION, APRIL, 2021

(Improvement/Supplementary)

MATHEMATICS

FMTH2C08: TOPOLOGY

Time: 3 Hours

Maximum Weightage: 30

PART A. Answer *all* questions. Each question carries 1 weightage.

- 1. Define convergence of a sequence in a topological space. Is limit of a sequence unique in a general topological space?
- 2. Define semi- open interval topology on **R** and compare it with the usual topology on **R**.
- 3. If X = { a,b,c }, $\tau = \{ \phi, X, \{a\}, \{a,b\}, \{a,c\} \}$ and if A = { b,c}, find \overline{A} , the closure of A.
- 4. Define accumulation point of a subset of a topological space. Under what condition, every open set containing the accumulation point contains infinitely many points of the set?
- 5. If X is compact and f: $X \rightarrow Y$ is continuous and onto, show that Y is compact.
- 6. Define connected set. Under what condition will the union of connected sets be connected?
- 7. Define component of a topological space and show that components are closed sets.
- 8. Define path connected space. Is every connected space be path connected? Justify your claim.

(8 x 1 = 8 Weightage)

PART B. Answer any two questions from each unit. Each question carries 2 weightage.

UNIT – I

- If (X, τ) is a topological space and B ⊂ τ, prove that B is a base for τ if and only if for any x ∈ X and any open set G containing x, there exists B ∈ B such that x ∈ B and B ⊂ G.
- 10. For a subset A of a topological space X, prove that $\overline{A} = \{ y \in X : every neighbourhood of y meets A non-vacuously \}.$
- 11. If (X, τ) , (Y, σ) are topological spaces and $f: X \to Y$ is a function, show that f is continuous if and only if for all $V \in \sigma$, $f^{-1}(V) \in \tau$.

UNIT – II

- 12. Show that the product topology is the weak topology determined by the projection functions.
- 13. Prove that every second countable space is separable.
- 14. Show that every continuous real valued function on a compact space is bounded.

UNIT – III

- 15. Define Hausdorff space. Show that in Hausdorff space, limits of sequences are unique.
- 16. Show that every completely regular space is regular.
- 17. Show that every regular, Lindeloff space is normal.

(6 x 2 = 12 Weightage)

PART C. Answer any two questions. Each question carries 5 weightage.

- 18. (a) Show that metrisability is a hereditary property.
 - (b) If f: X \rightarrow Y is continuous at a point $x_0 \in X$, prove that whenever a sequence { x_n } converges to x_0 in X, the sequence { $f(x_n)$ } converges to $f(x_0)$ in Y.
- 19. (a) Define quotient map and show that every open surjective map is a quotient map.
 - (b) Prove that every quotient space of a locally connected space is locally connected.
- 20. (a) Show that a topological space is T₁ if and only if for any x ∈ X, the singleton set {x} is closed.
 (b) Show that all metric spaces are T₄.
- 21. Show that a topological space X is normal if and only if it has the property that for every two mutually disjoint, closed subsets A, B of X, there exists a continuous function f: X → [0,1] such that f(x) = 0 for all x ∈ A and f(x) = 1 for all x ∈ B.

 $(2 \times 5 = 10 \text{ Weightage})$