(PTO)

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2021 (Improvement/Supplementary) **MATHEMATICS** FMTH2C07: REAL ANALYSIS II

Time: 2¹/₂ Hours

Part A: Answer all questions. Each carries 1 weightage

- 1. Prove that the translate of a measurable set is measurable.
- 2. Show that the Lebesgue measure is countably additive.
- 3. Prove that a real valued function that is continuous on its measurable domain is measurable.
- 4. Define Riemann integral of a function
- 5. Give an example of a function which is Lebesgue integrable, but, not Riemann integrable. Justify your answer.
- Let f be a bounded measurable functions defined on a set of finite measure E. Then prove 6. that $\left|\int_{E} f\right| \leq \int_{E} |f|$
- 7. Define bounded variation of a function.
- 8. Define a convex function. Give an example.

 $(8 \times 1 = 8$ Weightage)

Part B: Answer any two questions from each unit. Each carries 2 weightage.

Unit 1

- Prove that the union of finite collection of measurable sets is measurable 9.
- 10. State and prove Borel-Cantelli Lemma
- 11. Let the function f have a measurable domain E. Show that the following statements are equivalent
 - a) $\forall \alpha, \{x: f(x) > \alpha\}$ is measurable.
 - b) $\forall \alpha, \{x: f(x) \ge \alpha\}$ is measurable.
 - c) $\forall \alpha, \{x: f(x) < \alpha\}$ is measurable.
 - d) $\forall \alpha, \{x: f(x) \leq \alpha\}$ is measurable.

D2AMT1902 (S1)

(2 PAGES)

Name..... Reg.No.....

Maximum Weightage: 30

Unit 2

- 12. State and prove Chebychev's inequality.
- 13. Let f and g be bounded measurable functions defined on a set of finite measure E. Then prove that

(i) For any α and β

$$\int_{E} (\alpha f + \beta g) = \alpha \int_{E} f + \beta \int_{E} g$$

(ii) If $f \leq g$ on E, then $\int_E f \leq \int_E g$

14. Let the sequence of functions $\{f_n\}$ be uniformly integrable over E. If $\{f_n\} \to f$ pointwise a.e on E, then show that f is integrable over E.

Unit 3

- 15. Let C be a countable subset of the open interval (a, b). Then show that there is an increasing function on (a, b) that is continuous only at points in $(a, b) \sim C$.
- 16. State and prove Jordan's theorem.
- 17. Let E be a measurable set and 1 ≤ p ≤ ∞. Suppose {f_n} is a sequence in L^p(E) that converges point wise a.e on E to the function f which belongs to L^p(E). Then show that {f_n} → f in L^p(E) iff lim ∫_E |f_n|^p = ∫_E |f|^p.

$(6 \times 2 = 12 \text{ Weightage})$

Part C: Answer any two questions. Each carries 5 weightage

18. a) Let E be a measurable set of finite outer measure. Then show that for each $\varepsilon > 0$, there is a finite disjoint collection of open intervals $\{I_k\}_{k=1}^n$ for which if $0 = \bigcup_{k=1}^n I_k$, then $m^*(E \sim 0) + m^*(0 \sim E) < \varepsilon$

b) Show that the Lebesgue measure is countably additive.

- 19. State and prove Monotone Convergence theorem.
- 20. If the function f is monotone on the open interval (a, b), show that f is differentiable almost everywhere on (a, b).
- 21. Let the function f be continuous on the closed, bounded interval [a, b]. Then show that f is absolutely continuous on [a, b] if the family of divided difference functions $\{Diff_h f\}_{0 \le h \le 1}$ is uniformly integrable on [a, b]

$(2 \times 5 = 10 \text{ Weightage})$