Name..... Reg.No.....

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2023 (Regular/Improvement/Supplementary)

STATISTICS FMST1C05-DISTRIBUTION THEORY

Time: 3 Hours

Maximum Weightage: 30

Part A: Answer any *four* questions. Each carries *two* weightage.

- 1. Find E(X) if the distribution function of X is F (x) = 1 $-(1+x)e^{-x}$, x > 0.
- 2. Let X has a geometric distribution with parameter θ . Prove that $M_x(t) = \frac{\theta e^t}{1 e^t(1 \theta)}$.
- 3. Stating the conditions, prove convergence of binomial distribution to a Poisson distribution.
- 4. Define Gamma distribution. For the Gamma distribution with parameters (α, β) , prove that $\mu_r^1 = \frac{\Gamma(\alpha+r)}{\Gamma\alpha}\beta$, r = 1, 2, 3
- 5. Explain lognormal distribution. What are its important characteristics?
- 6. Define a bivariate normal distribution. If (X,Y) has a bivariate normal distribution, find the conditional expectation E(Y|X).
- 7. Define sampling distribution. Establish the inter-relationship between t, x^2 and F distributions.

$(4 \times 2 = 8 \text{ weightage})$

Part B: Answer any *four* questions. Each carries *three* weightage.

- 8. Define power series distributions. Obtain the recurrence relation for cumulants of power series distributions.
- 9. Define normal distribution. Derive the moment generating function of normal distribution. Hence find the moment generating function of standard normal distribution.
- 10. Explain 'lack of memory property' of exponential distribution. Let X₁ and X₂ be two independent r.v.s each having exponential distribution with mean 1.
 Find: P(X₁ < X₂) and P(X₁ < 2 X₂).
- 11. Explain mixtures of binomial distributions.
- 12. Define chi-square and derive its distribution. Obtain the mean, variance and moment generating function of chi-square distribution.
- 13. Derive F distribution. Explain its properties and applications.

(**P.T.O.**)

D1AST2305

14. If
$$f(x, y) = \frac{x+y}{21}$$
, $x = 1, 2, 3; y = 1, 2$

= 0, elsewhere.

Find:

i) the marginal distributions of X and Y.

- ii) E(Y/X) and E(X/Y)
- iii) The correlation coefficient between X and Y.

 $(4 \times 3 = 12 \text{ weightage})$

Part C: Answer any two questions. Each carries five weightage.

- 15. Show that binomial distribution tends to Normal distribution under certain conditions to be stated.
- 16. Explain the origin of Pearsonian system of distributions. Also establish the standard form of Pearsonian Main Type I distribution.
- 17. In bivariate transformations, obtain the distribution of the sum of two random variables. Let (X, Y) be a two dimensional non-negative continuous r.v having the joint density function

 $f(\mathbf{x}, \mathbf{y}) = \begin{cases} 4xye^{-(x^2+y^2)} & ; & X \ge 0, Y \ge 0\\ 0 & ; & \text{else where} \end{cases}$

Prove that the density function of $u = \sqrt{X^2 + Y^2}$ is

h (u) = $2u^3 e^{-u^2}$; $0 \le u < \infty$

= 0 ; elsewhere

18. Define non-central 't' distribution. Also derive the pdf of non-central 't' distribution.

 $(2 \times 5 = 10 \text{ weightage})$