Reg.	No	
Nam	3.	

FIRST SEMESTER M. Sc. DEGREE EXAMINATION, NOVEMBER 2023 (Regular/Improvement/Supplementary) MATHEMATICS FMTH1C04-DISCRETE MATHEMATICS

Time: Three Hours Max. Weightage: 30

Part A: Answer all questions. Each carries 1 weightage.

- Define Partial order. Give example of a Partial order which is not a total order and draw the Hasse diagram.
- 2. Show that Associate laws hold in a Boolean Algebra.
- 3. Define D.N.F and find the D.N.F of $f(x_1, x_2, x_3) = x_1x_3 + x_2x_3' + x_1x_2$
- 4. Define Composition of 2 graphs. Find $K_2[P_3]$.
- 5. Prove or Disprove: No loop can belong to an edge cut.
- 6. Define a Planar graph. Show that for a self-dual graph 2n = m + 2.
- 7. Define reverse of a string and Prove that $(w^R)^R = w$ or all $w \in \Sigma^*$.
- 8. Define a regular language. Give Example.

 $(8 \times 1 = 8 \text{ weightage})$

Part B: Answer any two questions from each unit. Each carries 2 weightage.

Unit I

- 9. Define Lattice. Let (X, +, ., ') be a Boolean Algebra and if $x, y \in X$, we define $x \le y$ if x.y' = 0. Show that \le makes X into a lattice.
- 10. Define atoms in a Boolean Algebra. Show that in a finite Boolean Algebra (X, +, ., ') every element of X can be expressed as a sum of atoms.
- Prove that the characteristic numbers of a symmetric Boolean function completely determine it.

Unit II

- 12. Show that a connected simple graph G is 3-edge connected if, and only if, every edge of G is the exact intersection of the edge sets of two cycles of G.
- 13. Show that the number of edges in a tree with n vertices is n-1. Whether the converse is true. Justify your answer.
- 14. State and prove Euler formula for connected plane graphs.

- 15. Find Grammer for $\Sigma = \{a, b\}$ that generates the set of all strings with at least one a and with exactly one a.
- 16. Find a dfa that accepts all strings on $\{0,1\}$, except those containing the substring 001.
- 17. Find dfa and nfa accepting the language $\{(10)^n : n \ge 0\}$.

(6 x 2= 12 weightage)

Part C: Answer any any two questions. Each carries 5 weightage.

- 18. State and prove Stone representation theorem for finite Boolean algebras.
- 19. State and Prove Whitney's Theorem
- 20. Define Eulerian Graph and Give example. Prove that a connected graph G is Eulerian if and only if G is an edge disjoint union of cycles.
- 21. Convert the nfa into equivalent dfa.

 $(2 \times 5 = 10 \text{ weightage})$