D1AMT2303

(2 Pages)

Name..... Reg.No....

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2023 (Regular/Improvement/Supplementary) MATHEMATICS FMTH1C03: REAL ANALYSIS I

Time: 3 Hours

Maximum Weightage: 30

Part A: Answer all questions. Each carries 1 weightage.

- 1. Prove that open balls are convex subsets of \mathbb{R}^k .
- 2. Construct a bounded set of real numbers with exactly three limit points.
- 3. If f is a continuous mapping of a metric space X into a metric space Y, then prove that

 $f(\overline{E}) \subset \overline{f(E)}.$

- 4. True or False: Every continuous function is uniformly continuous. Substantiate your claim.
- 5. State Cauchy criterion for uniform convergence.
- 6. Define rectifiable curves.
- 7. Give an example of a function which is not Riemann- Stieltjes integrable. Justify your answer.
- 8. Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.

 $(8 \times 1 = 8 \text{ weightage})$

Part B: Answer any two questions from each unit. Each carries 2 weightage.

Unit 1

- 9. Prove that every infinite subset of a countable set A is countable.
- 10. Suppose $K \subset Y \subset X$. Then K is compact relative to X if and only if K is compact relative to Y.
- 11. Prove that monotone functions have no discontinuities of the second kind.

(P.T.O.)

- 12. Prove that $f \in R(\alpha)$ if and only if for every $\epsilon > 0$, there exists a partition P such that $U(P, f, \alpha) L(P, f, \alpha) < \epsilon$.
- 13. (a) Suppose f is a real differentiable function on [a, b] such that $f'(a) < \lambda < f'(b)$. Then prove that there exists $x \in (a, b)$ such that $f'(x) = \lambda$.
 - (b) State and prove fundamental theorem of calculus.
- 14. If a < s < b, f is bounded on [a, b], f is continuous at s, and $\alpha(x) = I(x s)$, then prove that $\int_a^b f \ d\alpha = f(s)$.

Unit 3

- 15. Suppose $f_n \to f$ uniformly on a set E in a metric space. Let x be a limit point of E and suppose that $\lim_{t\to x} f_n(t) = A_n$. Then prove that $\lim_{t\to x} f(t) = \lim_{n\to\infty} A_n$.
- 16. Prove that $\mathscr{C}(X)$ is a complete metric space.
- 17. If K is compact metric space, if $f_n \in \mathscr{C}(X)$ for n = 1, 2, ... and if $\{f_n\}$ converges uniformly on K, then prove that $\{f_n\}$ is equicontinuous on K.

 $(6 \times 2 = 12 \text{ weightage})$

Part C: Answer any two questions. Each carries 5 weightage.

- 18. (a) Prove that a nonempty perfect set in \mathbb{R}^k is uncountable.
 - (b) Prove that every bounded infinite subset of \mathbb{R}^k has a limit point in \mathbb{R}^k .
- 19. (a) Suppose f is a continuous mapping of a compact metric space X into a metric space Y. Then prove that f(X) is compact.
 - (b) State and prove L'Hospital's Rule.
- 20. (a) Assume α increases monotonically and α' is Riemann integrable on [a, b]. Then prove that a bounded real function f on [a, b] is Riemann-Stieltjes integrable if and only if $f\alpha'$ is Riemann integrable on [a, b].
 - (b) State and prove integration by parts rule.
- 21. State and prove Stone- Weierstrass theorem.

 $(5 \times 2 = 10 \text{ weightage})$