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FIRST SEMESTER M. Sc. DEGREE EXAMINATION, NOVEMBER 2023

(Regular /Improvement /Supplementary)
MATHEMATICS
FMTH1C02 - LINEAR ALGEBRA

Time: 3 hours Maximum weightage: 30

10.

Part A: Answer all questions. Each carries 1 weightage.

. Let W7 and W5 be subspaces of a vector space V such that W7 + Wy = V and

Wi N Wy = {0}. Show that there exists unique vectors a; € W; and s € Wy such
that a = a1+, Va € V.

. Find all ¢ such that {(1,2,3),(1,3,1),(0,¢,c)} is a basis for R3.

. Let V' be a vector space of all 2x 2 matrices over the field F'. Show that dimp (V') = 4

by providing a basis for V.

Does there exist a linear transformation 7' : R* — R? such that 7'(1,—1,1) = (1,0)
and T'(1,1,1) = (0,1)? Justify your answer.

. Let T be the linear operator on R? defined by

T(x1,xe,x3) = (311 + 423, —21 + T2, —21 + T2 + 4x3).
Find the matrix of T relative to the standard ordered basis of R3.
Show that the trace function is a linear functional on the matrix space F"™*™.

Prove that any projection on a vector space is diagonalizable.

. Define inner product on a vector space and show that if (a/f) =0V g € V, then

a=0.

(8 x 1 = 8 weightage)

Part B: Answer any two questions from each unit.
Each carries 2 weightage.

Unit 1

. Let B = {(1,0,—-1),(1,1,1),(1,0,0)} be the ordered basis for R®>. What are the

coordinates of the vector (a, b, ¢) in the ordered basis B?

Let T be a linear transformation from V into W. Prove that T' is non-singular if and
only if T carries each linearly independent subset of V' onto a linearly independent
subset of W.
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Prove that every n—dimensional vector space over the field F' is isomorphic to the
space F™".

Unit 11

If W is a k—dimensional subspace of an n—dimensional vector space V', prove that
W is the intersection of (n — k) hyperspaces in V.

Let a,b and ¢ be elements of a field F, and let A be the following 3 x 3 matrix over
F:

A:

O = O
_ o O
L O

Prove that the characteristic polynomial for A is 2® — az? — bx — ¢ and that this is
also the minimal polynomial for A .

Let V' be a finite-dimensional vector space over the field F' and let T' be a linear
operator on V. Prove that T is triangulable if and only if the minimal polynomial
for T is a product of linear polynomials over F.

Unit III

Let T be a linear operator on a finite-dimensional vector space V. Let R be the
range of 7" and let NV be the null space of T'. Prove that R and N are independent
if and only if V=R& N.

State and prove the Cauchy-Schwarz inequality.

Prove that every finite-dimensional inner product space has an orthonormal basis.
(6 x 2 = 12 weightage)

Part C: Answer any two questions. Each carries 5 weightage.

Let W7 and W5 be two finite-dimensional subspaces of a vector space V', then prove

State and prove Rank-Nullity theorem.
State and prove the Cayley-Hamilton Theorem.

Consider R* with the standard inner product. Let W be the subspace of R* consist-
ing of all vectors which are orthogonal to both & = (1,0, —1,1) and 5 = (2,3, -1, 2).
Find a basis for W.

(2 x 5 = 10 weightage)



