D1AMT2302

(2 Pages)

Name.....

Reg.No.....

FIRST SEMESTER M. Sc. DEGREE EXAMINATION, NOVEMBER 2023 (Regular/Improvement/Supplementary)

MATHEMATICS

FMTH1C02 - LINEAR ALGEBRA

Time: 3 hours

Maximum weightage: 30

Part A: Answer all questions. Each carries 1 weightage.

- 1. Let W_1 and W_2 be subspaces of a vector space V such that $W_1 + W_2 = V$ and $W_1 \cap W_2 = \{0\}$. Show that there exists unique vectors $\alpha_1 \in W_1$ and $\alpha_2 \in W_2$ such that $\alpha = \alpha_1 + \alpha_2 \forall \alpha \in V$.
- 2. Find all c such that $\{(1,2,3), (1,3,1), (0,c,c)\}$ is a basis for \mathbb{R}^3 .
- 3. Let V be a vector space of all 2×2 matrices over the field F. Show that $\dim_F(V) = 4$ by providing a basis for V.
- 4. Does there exist a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^2$ such that T(1, -1, 1) = (1, 0)and T(1, 1, 1) = (0, 1)? Justify your answer.
- 5. Let T be the linear operator on \mathbb{R}^3 defined by

 $T(x_1, x_2, x_3) = (3x_1 + 4x_3, -x_1 + x_2, -x_1 + 3x_2 + 4x_3).$

Find the matrix of T relative to the standard ordered basis of \mathbb{R}^3 .

- 6. Show that the trace function is a linear functional on the matrix space $F^{m \times n}$.
- 7. Prove that any projection on a vector space is diagonalizable.
- 8. Define inner product on a vector space and show that if $(\alpha/\beta) = 0 \forall \beta \in V$, then $\alpha = 0$.

$(8 \ge 1 = 8 \text{ weightage})$

Part B: Answer *any two* questions from each unit. Each carries 2 weightage.

Unit 1

- 9. Let $\mathcal{B} = \{(1, 0, -1), (1, 1, 1), (1, 0, 0)\}$ be the ordered basis for \mathbb{R}^3 . What are the coordinates of the vector (a, b, c) in the ordered basis \mathcal{B} ?
- 10. Let T be a linear transformation from V into W. Prove that T is non-singular if and only if T carries each linearly independent subset of V onto a linearly independent subset of W.

(P.T.O.)

11. Prove that every n-dimensional vector space over the field F is isomorphic to the space F^n .

Unit II

- 12. If W is a k-dimensional subspace of an n-dimensional vector space V, prove that W is the intersection of (n k) hyperspaces in V.
- 13. Let a, b and c be elements of a field F, and let A be the following 3×3 matrix over F:

$$A = \begin{bmatrix} 0 & 0 & c \\ 1 & 0 & b \\ 0 & 1 & a \end{bmatrix}$$

Prove that the characteristic polynomial for A is $x^3 - ax^2 - bx - c$ and that this is also the minimal polynomial for A.

14. Let V be a finite-dimensional vector space over the field F and let T be a linear operator on V. Prove that T is triangulable if and only if the minimal polynomial for T is a product of linear polynomials over F.

Unit III

- 15. Let T be a linear operator on a finite-dimensional vector space V. Let R be the range of T and let N be the null space of T. Prove that R and N are independent if and only if $V = R \oplus N$.
- 16. State and prove the Cauchy-Schwarz inequality.
- 17. Prove that every finite-dimensional inner product space has an orthonormal basis.

 $(6 \ge 2 = 12 \text{ weightage})$

Part C: Answer any two questions. Each carries 5 weightage.

- 18. Let W_1 and W_2 be two finite-dimensional subspaces of a vector space V, then prove that $\dim(W_1) + \dim(W_2) = \dim(W_1 \cap W_2) + \dim(W_1 + W_2)$.
- 19. State and prove Rank-Nullity theorem.
- 20. State and prove the Cayley-Hamilton Theorem.
- 21. Consider \mathbb{R}^4 with the standard inner product. Let W be the subspace of \mathbb{R}^4 consisting of all vectors which are orthogonal to both $\alpha = (1, 0, -1, 1)$ and $\beta = (2, 3, -1, 2)$. Find a basis for W.

$$(2 \ge 5 = 10 \text{ weightage})$$