(4 Pages)

Name..... Reg.No.....

FIRST SEMESTER M.A. DEGREE EXAMINATION, NOVEMBER 2023 (Regular/Improvement/Supplementary) ECONOMICS FECO1C04- QUANTITATIVE METHODS FOR ECONOMIC ANALYSIS I

Time: 3 Hours

Maximum Weightage: 30

Part A: Multiple choice questions. Answer *all* questions. Each carries 1/5 weightage.

1. Which of the following is an example of linear function?

a) $y = 3x^2 + 2x + 9$ b) $y = \frac{x}{3} + 2$ c) $y = \log_{10} x$ d) $y = e^x$

2. Which of the following is not a type of matrix?

a) Square matrix b) Scalar matrix c) Space matrix d) Term matrix

3. What is true regarding determinant of a matrix?

a) The concept of determinant is applicable to square matrices only.

- b) To find determinant, subtract diagonal elements together.
- c) Determinant is a vector value that can be computed from the elements of a trace matrix.

d) Both (a) and (c).

- 4. Chain rule of differentiation is also known as:
 - a) Functional rule b) Product rule
 - c) function of function rule d) Quotient rule

b) $\frac{1}{x^2}$

- 5. $y = \frac{1}{x}, \quad \frac{dy}{dx}$?
 - a) 1

c) $-\frac{1}{x^2}$

d) x^2

6.
$$\lim_{x \to 2} \frac{(x-2)^2}{x^2 - 4}$$
 is
a) 0 b) 1 c) 2 d) 3

(**P.T.O.**)

7.	$\int \frac{1}{x} dx = ?$						
	a) $x + c$	b) $\frac{1}{x} + c$	c) $\log x + c$	d) $\frac{1}{x^2} + c$			
8.	$\frac{\partial}{\partial x}(3x^2 + xy + 4y^2)$ is	5					
	a) <i>x</i> +8 <i>y</i>	b) <i>6x</i> + <i>y</i>	c) <i>6x</i> +8 <i>y</i>	d) <i>x</i> + <i>y</i>			
9.	The differential dy of the function $y = x^3 + 4$ is						
	a) $3x^2$	b) $(3x^2+4)dx$	c) $3x^2dx$	d) none of these			
10.	The order of the differential equation $\frac{dy}{dt} = 5x + 7$ is						
	a) 0	b) 1	c) 2	d) 3			
11.	The general solution of the differential equation $\frac{dy}{dx} = xe^x$ is						
	a) $y = (x-1)e^{x} + c$	b) $y = (x + c)$	c) $y = (xe^{x} + c)$	d) none of these			
12.	The order of the difference equation $\Delta^2 Y_t + \Delta Y_t = Y_t$ is						
	a) 1	b) 2	c) 3	d) 4			
13.	The total of first 100 number is						
	a) 5050	b) 10100	c) 7500	d) 5000			
14.	If n^{th} term of a G.P is 2^n , then the sum of its 6 terms is						
	a) 126	b) 124	c) 190	d) 154			
15.	The compound interest on 12000 for 3 years at 10% per annum compounded annually is						
	a) 3972	b) 3872	c) 3772	d) 3672			
				$(15 \times 1/5 = 3 \text{ weightage})$			

Part B: Answer any *five* questions. Each carries *one* weightage.

		[3	2	2]	
16.	Find the adjoint and inverse of the matrix	2	1	4	
		1	3	5	

- State any two properties of determinants and find the value of the determinant $\begin{bmatrix} a & b & c \\ b & c & a \end{bmatrix}$. 17.
- Explain the marginal concepts related to demand and supply function. 18.
- Find the maximum and minimum values of $\frac{1}{3}x^3 \frac{5}{2}x^2 + 4x + 10$. 19.
- Find the partial derivatives $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ of the function $z = \log(x^2 + y^2)$. 20.

Find the general and particular solutions for the differential equations $\frac{dy}{dx} - 6x + 2 = 0$ given 21. that x = 3 when y = 0.

- Write a short note on the relationship between interest rates and price of bonds. 22.
- 23. Find the sum of the first 15 terms of the series: 20+18+16+14+....

 $(5 \times 1 = 5 \text{ weightage})$

Part C: Answer any seven questions. Each carries two weightage.

- 24. Find the rank of the matrix $\begin{vmatrix} 1 & 0 & 2 & 3 \\ 2 & 1 & 0 & 1 \\ 4 & 1 & 4 & 7 \end{vmatrix}$.
- Solve the quadratic equation $x^2 + 6x + 10 = 0$. 25.
- 26. State any three rules of differentiation.
- A demand curve is given by $p = aq^{\beta}$. Find the marginal revenue function and the elasticity 27. of demand.
- Evaluate the integrals: (i) $\int_{10xdx}^{4} 10xdx$ (ii) $\int_{10xdx}^{3} (4x^3 + 6x)dx$ 28.
- 29. Explain constrained optimization with Lagrangian multipliers.
- Define a differential equation. Determine the general solution for the differential equation 30.

$$\frac{dy}{dt} = e^{0.5t}$$

- 31. Write down any two economic applications of differential equations.
- Distinguish between simple interest and compound interest. 32.
- 33. The sum of the first 12 terms of an A.P. is 222, the sum of the first 5 terms is 40. Write down the first four terms of the series.

 $(7 \times 2 = 14 \text{ weightage})$ (**P.T.O.**)

Part D: Answer any two questions. Each carries four weightage.

34. Solve by Cramer's rule the following system of equations.

 $4x_1 + 2x_2 - x_3 = 40$ $2x_1 + 3x_2 = 43$ $x_1 + 3x_3 = 38$

- 35. Explain the concept of total derivative. Also find the total derivative $\frac{dy}{dt}$, given $y = 2x_1^2 5x_1x_2 6x_2^2$, where $x_1 = 3t^2$ and $x_2 = 5 2t$.
- 36. a) A firm sells a product of Rs.9 per unit. The total cost of the firm for producing x units is given by $C = 20 + 0.6x + 0.01x^2$. How many units should be made to achieve maximum profit? Verify that the condition for a maximum is satisfied.

b) A company finds that it can sell out a certain item for Rs. 2 per unit. The cost function estimated to be $100 + \frac{1}{2} \left(\frac{q}{20}\right)^2$. What is the average cost when 100 units are produced? Find the marginal revenue and marginal cost?

37. Solve the equation below using the formula for a general solution. $2\frac{dy}{dt} - 2t^2y = 9t^2$, y(0) = -2.5.

 $(2 \times 4 = 8 \text{ weightage})$