(2 Pages)

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2022 (Regular/Improvement/Supplementary)

STATISTICS FMST1C05-DISTRIBUTION THEORY

Time: 3 Hours

Maximum Weightage: 30

Part A: Answer any *four* questions. Each carries *two* weightage.

- 1. What is a hierarchical model? Give one example.
- 2. State recurrence relation for cumulants of power series distribution.
- 3. Let $X_k \to Geo(p_k), k = 1, 2, ..., n$ be a sequence of independent random variables and $m_n = Min(X_1, X_2, ..., X_n)$. Show that $m_n \stackrel{d}{\to} Geo(p)$ where $p = \prod_{k=1}^n p_k$.
- 4. Define log normal distribution. Find the distribution of $Y = \prod_{i=1}^{n} X_i$, where X_i 's are independent and identically distributed lognormal random variables.
- 5. Define order statistics. Write the formula for the probability density function of $R = X_{(n)} X_{(1)}$.
- 6. If X & Y are independent binomial random variable such that $X \xrightarrow{d} B(m, p)$, and $Y \xrightarrow{d} B(n, p)$, show that X/(X + Y) is hyper geometric.
- 7. Discuss the properties of location-scale family.

$(4 \times 2 = 8 \text{ weightage})$

Part B: Answer any four questions. Each carries three weightage.

- 8. Define Chi-square distribution and state its applications. Also discuss its interrelationship with other sampling distributions.
- 9. If X and Y are independent exponential random variables with parameter β , show that $\frac{X}{X+Y}$ has U(0,1) distribution.
- 10. Define Negative binomial distribution. Also derive the recurrence relation of its central moments.
- 11. Define the Weibull distribution and obtain it as a transformation of the exponential random variable. Also find the mean and variance of Weibull distribution.
- 12. Briefly explain about Pearsonian system of distributions.
- 13. If $X \xrightarrow{d} Beta(m, n)$, show that $Y = \frac{n}{m} \frac{X}{1-X}$ has F(2m, 2n) distribution.
- 14. State and prove Minkowski's inequality.

 $(4 \times 3 = 12 \text{ weightage})$

Part C: Answer any two questions. Each carries five weightage.

- 15. If X_1 , X_2 , ..., X_n are i.i.d r.v's having U(0, a) distribution. Identify the distribution of midrange $V = \frac{X_{(n)} + X_{(1)}}{2}$.
- 16. If (X, Y) has a bivariate normal distribution, find E(X|Y) & E(Y|X).
- 17. If $X_1 \& X_2$ are independent gamma random variables with same scale parameters, show that $X_1 + X_2$ and $\frac{X_1}{X_1 + X_2}$ are independently distributed. Identify their distributions.
- 18. Derive non-central t-distribution. When will this reduce to central t distribution?

 $(2 \times 5 = 10 \text{ weightage})$