Name..... Reg.No.....

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2022 (Regular/Improvement/Supplementary)

STATISTICS FMST1C01-MEASURE THEORY AND INTEGRATION

Time: 3 Hours

Maximum Weightage: 30

Part A: Answer any *four* questions. Each carries *two* weightage.

- 1. Let μ be a measure defined on a σ algebra *X*. If (F_n) is a decreasing sequence in *X* and if μ (F₁) < ∞ , then show that $\mu(\bigcap_{n=1}^{\infty} F_n) = \lim \mu(F_n)$.
- 2. If (μ_n) is a sequence of measures on X with $\mu(X) = 1$ and if λ is defined by $\lambda(E) = \sum_{n=1}^{\infty} 2^{-n} \mu_n(E)$, E in X, show that λ is a measure on X and $\lambda(X) = 1$.
- 3. If f is measurable and B is a Borel set, then show that $f^{-1}(B)$ is measurable.
- 4. If f is a measurable function and if f = g a.e, show that g is measurable.
- 5. Suppose that f belongs to M⁺. Then prove that f(x) = 0 µ-almost everywhere on X if and only if $\int f d\mu = 0$.
- 6. Establish the uniqueness of the Radon-Nykodym derivative.
- 7. If μ is a signed measure such that $\mu \perp \lambda$ and $\mu \ll \lambda$ then show that $\mu = 0$.

$(4 \times 2 = 8 \text{ weightage})$

Part B: Answer any four questions. Each carries three weightage.

8. Let $f: X \to Y$ be a function and let C and D be subsets of the co-domain Y. Then prove:

a)
$$f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$$

- b) f^{-1} (C U D) = f^{-1} (C) U f^{-1} (D).
- 9. If f and g are integrable over E , show that f + g is integarble over E and $\int_E (f + g) = \int_E f + \int_E g$
- 10. State and prove Lebesgue dominated convergence theorem.
- 11. Establish Minkowski's inequality.
- 12. Let λ , μ and ν be σ -finite measures on (X, X). If $\nu \ll \mu \ll \lambda$

Then show that $\frac{d\nu}{d\lambda}=\frac{d\nu}{d\mu}~\frac{d\mu}{d\lambda}$.

- 13. If $f_n \rightarrow f$ in measure show that there is a subsequence { f_{nk} } which converge to f a.e.
- 14. Define convergence in L_p . Give an example of sequence (f_n) of functions which converges in L_p but does not converge to f (x) for any x in X.

Part C: Answer any two questions. Each carries five weightage.

- 15. Under usual assumptions, prove that a non-negative function is the limit of a sequence of a monotone increasing sequence of simple functions.
- 16. State and prove Fatous' lemma and use it to prove the Monotone Convergence theorem.
- 17. State and prove product measure theorem.
- 18. State and prove Lebesgue decomposition theorem. Mention the application of this result in Probability theory.

 $(2 \times 5 = 10 \text{ weightage})$