(3 Pages)

Name..... Reg.No.....

FIRST SEMESTER M. Sc. DEGREE EXAMINATION, NOVEMBER 2022 (Regular/Improvement/Supplementary)

MATHEMATICS FMTH1C04- DISCRETE MATHEMATICS

Time: 3 Hours

Maximum Weightage: 30

Part A: Answer *all* questions. Each carries 1 weightage.

- 1. Give an example of a partial order on a set which is not a total order.
- 2. State and prove laws of tautology in a boolean algebra.
- 3. Define self complementary graphs and give one example.

4. Give an example of a non simple connected graph with $\delta \ge \frac{n-1}{2}$

- 5. For any simple graph prove that $Aut(G) = Aut(G^c)$
- 6. Give an example of a graph with *n* vertices and n-1 edges that is not a tree.
- 7. Use induction on *n* to show that $|u^n| = n|u|$ for all strings *u* and all *n*.
- 8. Prove that $(\omega^R)^R = \omega$ for all $\omega \in \Sigma^*$

(8 × 1 = 8 weightage)

Part B: Answer any two questions from each unit. Each carries 2 weightage.

Unit 1

- 9. a) Let *R* be an equivalence relation on a set *X*. Then for every $x \in X$, prove that $x \in [x]$ Also for any $x, y \in X$, either [x] = [y] or $[x]I[y] = \phi$.
 - b) If x_1, x_2, \dots, x_n are elements of a boolean algebra then prove that $x_1 + x_2 + \dots + x_n = 0$ if and only if $x_i = 0$ for all i = 1 to n.
- 10. a) Let (X, \leq) be a poset and A, a non empty finite subset of X. Then prove that A has at least one maximal element. Also prove that A has a maximum element if and only if it has a unique maximal element.
 - b) Prove that a well ordered set is totally ordered.

- 11. a) Prove that a partial order \leq on a set X is total if and only if the corresponding strict order < satisfies the following property: for all $x, y \in X$, either x < y or x = y or y < x.
 - b) Let Y be a sub algebra of a boolean algebra $(X,+\bullet)$. Then prove that Y is a boolean algebra.

Unit 2

- 12. a) If $\{x, y\}$ is a 2-edge cut of a graph G, show that every cycle of G contains x must also contain y.
 - b) An edge e = xy of a connected graph G is a cut edge of G if and only if e belongs to no cycle of G.
- 13. a) If $\delta(G) \ge 2$, G contains a cycle.
 - b) A connected graph G is a tree if and only if every edge of G is a cut edge of G.
- 14. a) A graph is planar if and only if it is embedded on a sphere.
 - b) Let G be a plane graph and f be a face of G. Then there exists a plane embedding of G in which f is the exterior face.

Unit 3

- 15. a) Prove or disprove $(L_1 Y L_2)^R = L_1^R Y L_2^R$ for all languages L_1 and L_2 .
 - b) Find a grammar that generates the language $L = \{\omega \omega^R : \omega \in \{a, b\}^+\}$. Give a complete justification of your answer..
- 16. Let $M = (Q, E, \delta, q_o, F)$ be a dfa, and let G_M be its associated transition graph. Then for every $q_i, q_j \in Q$ and $w \in E^+, \delta^*(q_j, w) = q_j$ if and only if there is in G_M a walk with label w from q_i to q_j
- 17. Find a dfa that accepts all strings on $\{0,1\}$, except those containing the sub string 001

$(6 \times 2 = 12 \text{ weightage})$

Part C: Answer any two questions. Each carries 5 weightage.

- 18. a) Every finite boolean algebra is isomorphic to a power set boolean algebra.
 - b) Write the following boolean function in disjunctive normal form.

$$f(x_1, x_2, x_3) = (x_1 + x_2^{-1})x_3^{-1} + x_2x_1^{-1}(x_2 + x_1^{-1}x_3).$$

- 19. a) Prove that the number of edges in a tree on n vertices is n-1. Conversely prove that a connected graph on n vertices and n-1 edges is a tree.
 - b) Every connected graph contains a spanning tree.
- 20. a) Prove that $K_{3,3}$ is non planar.
 - b) State and prove Euler's formula in plane graphs.
- 21. a) Define an nfa with no more than five states for the set

 $\left\{abab^{n}: n > 0\right\} Y \left\{aba^{n}: n \ge 0\right\}$

b) Let *L* be the language accepted by an nfa $M_N = (Q_N, E, \delta_N, q_0, F_N)$.

Then prove that there exists a dfa $M_D = (Q_D, E, \delta_D, \{q_0\}, F_D)$ such that $L = L(M_D)$.

 $(2 \times 5 = 10 \text{ weightage})$