D1AMT2202

(2 Pages)

Name.....

Reg.No.....

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2022 (Regular/Improvement/Supplementary) MATHEMATICS FMTH1C02 - LINEAR ALGEBRA

Time: 3 Hours

Maximum weightage: 30

Part A

Answer all questions. Each carries 1 weightage.

- 1. Let V be a vector space over \mathbb{C} . Suppose α, β and γ are linearly independent vectors in V. Prove that $(\alpha + \beta), (\beta + \gamma)$ and $(\gamma + \alpha)$ are linearly independent.
- 2. Show that the inverse of a linear transformation, if it exists, is linear.
- 3. Let T be the linear operator on \mathbb{R}^2 defined by $T(x_1, x_2) = (-x_2, x_1)$. What is the matrix of T relative to the standard ordered basis of \mathbb{R}^2 ?
- 4. Find the dual basis of standard ordered basis of \mathbb{R}^3 .
- 5. Show that similar matrices have the same characteristic polynomial.
- 6. Prove that if E is the projection on R along N, then (I E) is the projection on N along R.
- 7. Define inner product. Give an example.
- 8. Prove that an orthogonal set of non-zero vectors is linearly independent.

 $(8 \ge 1 = 8 \text{ weightage})$

Part B

Answer any two questions from each unit. Each carries 2 weightage.

Unit 1

- 9. Show that the subspace spanned by a non-empty subset S of a vector space V is the set of all linear combinations of vectors in S.
- 10. Find the coordinate matrix of the vector (1, 0, 1) relative to the ordered basis $\mathscr{B} = \{\alpha_1, \alpha_2, \alpha_3\}$ where $\alpha_1 = (1, 0, -1), \alpha_2 = (1, 2, 1)$ and $\alpha_3 = (0, -3, 2)$.
- 11. Let $T: V \to W$ be a linear transformation. Show that T is non-singular if and only if T carries each linearly independent subset of V onto a linearly independent subset of W.

(P.T.O.)

Unit 2

- 12. Let V be a finite-dimensional vector space over the field F, and let W be a subspace of V. Show that dim $W + \dim W^0 = \dim V$.
- 13. Let g, f_1, \dots, f_r be linear functionals on a vector space V with respective null spaces N, N_1, \dots, N_r . Show that g is a linear combination of f_1, \dots, f_r if and only if N contains the intersection $N_1 \cap N_2 \cap \dots \cap N_r$.
- 14. Let A be any $m \times n$ matrix over the field F. Show that the row rank of A is equal to the column rank of A.

Unit 3

- 15. Let $V = W_1 \oplus \cdots \oplus W_k$. Show that there exist k linear operators E_1, \ldots, E_k on V such that
 - (a) each E_i is a projection;
 - (b) $E_i E_j = 0$, if $i \neq j$;
 - (c) $I = E_1 + \dots + E_k;$
 - (d) the range of E_i is W_i .
- 16. Let V be an inner product space. Show that $|(\alpha \mid \beta)| \leq ||\alpha|| ||\beta||$ and $||\alpha + \beta|| \leq ||\alpha|| + ||\beta||$ for all α, β in V.
- 17. State and prove Bessel's inequality.

 $(6 \ge 2 = 12$ weightage)

Part C

Answer any two questions. Each carries 5 weightage.

- 18. (a) Suppose W_1 and W_2 are finite dimensional subspaces of a vector space V. Show that $\dim W_1 + \dim W_2 = \dim (W_1 + W_2) + \dim (W_1 \cap W_2)$.
 - (b) Let W_1 and W_2 be subspaces of a vector space V such that $W_1 + W_2 = V$ and $W_1 \cap W_2 = \{0\}$. Prove that for each α in V there are unique vectors α_1 in W_1 and α_2 in W_2 such that $\alpha = \alpha_1 + \alpha_2$.
- 19. (a) Let V be a finite-dimensional vector space over F and let $\{\alpha_1, \dots, \alpha_n\}$ be an ordered basis for V. Let W be a vector space over the same field F and let β_1, \dots, β_n be any vectors in W. Show that there is only one linear transformation T from V into W such that $T\alpha_j = \beta_j$ for $j = 1, \dots, n$.
 - (b) Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation such that T(1,0) = (1,0,0) and T(0,1) = (0,0,1). Find T(2,3).
- 20. Let V be a finite-dimensional vector space over the field F and let T be a linear operator on V. Show that T is diagonalizable if and only if the minimal polynomial for T has the form $p = (x c_1) \cdots (x c_k)$ where c_1, \cdots, c_k are distinct elements of F.

21. Apply the Gram-Schmidt process to the vectors $\beta_1 = (3, 0, 4), \beta_2 = (-1, 0, 7), \beta_3 = (2, 9, 11)$, to obtain an orthonormal basis for \mathbb{R}^3 with the standard inner product.

 $(2 \times 5 = 10 \text{ weightage})$