(2 Pages)

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2021 (Regular/Improvement/Supplementary)

STATISTICS FMST1C05-DISTRIBUTION THEORY

Time: 3 Hours

Maximum Weightage: 30

Part A: Answer any *four* questions. Each carries *two* weightage.

- 1. If X and Y are independent Poisson random variables with respective means λ_1 and λ_2 . Find E(X/X + Y = n).
- 2. If X and Y are independent exponential random variables with parameter β , show that $\frac{X}{X+Y}$ has U(0,1) distribution.
- 3. For any integer valued random variable, show that $\sum_{n=0}^{\infty} s^n P(X \le n) = (1 s)^n P(s)$, where P is the PGF of X.
- 4. Show that Var(X) = E(Var(X|Y)) + Var(E(X|Y)).
- 5. Derive the joint distribution of $X_{(r)}$, $X_{(s)}$, the r^{th} and s^{th} order statistic.
- 6. Explain location-scale family of distributions. Give examples.
- 7. If $X_1, X_2, ..., X_n$ are U(0,1) random variables, show that $nMin(X_1, X_2, ..., X_n)$ is asymptotically exponentially distributed.

$(4 \times 2 = 8 \text{ weightage})$

Part B: Answer any four questions. Each carries three weightage.

- 8. Derive the distribution of $R = X_{(r)} X_{(s)}$, if $X_1, X_2, ..., X_n$ are independent and identically distributed U(0,1) random variables.
- 9. Define log-Normal distribution. Find its characteristic function.
- 10. In sampling from normal distribution, show that the sample mean \overline{X} and sample variance S^2 are independent.
- 11. If $X \xrightarrow{d} Cauchy$ (0,1), then show that its moment generating function does not exist. Also find the probability distribution of $Y = \frac{1}{x}$
- 12. If $X \xrightarrow{d} Beta(m, n)$, show that $\frac{n}{m} \frac{X}{1-X}$ has F(2m, 2n) distribution.
- 13. Define Hypergeometric distribution. Find its mean and variance.

14. Let X be a random variable with a continuous distribution function F. Then show that Y = F(X) has uniform distribution on [0,1].

 $(4 \times 3 = 12 \text{ weightage})$

Part C: Answer any two questions. Each carries five weightage.

- 15. Define power series distribution. Explain how we obtain binomial distribution from power series distribution. Also identify the expression for moment generating function, mean and variance of power series distribution.
- 16. i) Explain about Weibull distribution. Show that $Min(X_1, X_2, ..., X_n)$ follows Weibull distribution if and only if X_i 's are Weibull distributed.

ii) State and prove Holder's inequality.

- 17. If X is a non negative random variable with distribution function F(.), show that $E(X) = \int_0^\infty (1 F(x)) dx$. Using this formula, identify E(X) of exponential distribution with parameter β .
- 18. Derive probability density function of non central F distribution.

 $(2 \times 5 = 10 \text{ weightage})$