Name	
Reg.No.	

FIRST SEMESTER M. Sc. DEGREE EXAMINATION, NOVEMBER 2021 MATHEMATICS FMTH1C04-DISCRETE MATHEMATICS

Time: Three Hours

D1AMT2104

Max. Weightage : 30

Part A

Answer all questions. Each carries 1 weightage.

- 1. Give example of a lattice on the set $X = \{a, b, c\}$.
- 2. In a Boolean algebra $(X, +, \cdot)$, show that $(x + y)' = x' \cdot y'$.
- 3. Draw a graph on four vertices and give its complement.
- 4. Is it possible to draw a graph having graphical sequence $\{1, 2, 3, 4, 5\}$? Justify your claim.
- 5. Define a connected graph. Give one example.
- 6. Define Eulerian graph. Give example of a complete bipartite graph that is Eulerian.
- 7. Define an automata.
- 8. Find the grammar that generates the language $\{a^{n+1}b^n, n \ge 0\}$.

 $(8 \ge 1 = 8 \text{ weightage})$

Part B

Answer any **two** questions from each unit. Each carries 2 weightage.

Unit I

- 9. (a) Define a partial order, minimal element and the minimum element. Give one example for each.
 - (b) Is it possible to have a poset on a non-empty set with more than one maximal element ? If YES, give one example.
- 10. (a) Define the characteristic number of a Boolean function and give one example.
 - (b) Define isomorphism of Boolean algebras and give one example.
- 11. (a) Let (X, \leq) be a poset and $x \in X$. Let $A = \{z \in X : x < z\}$. Prove that an element $y \in X$ covers x if and only if y is a minimal element of A.
 - (b) How do you convert a Boolean function from the conjunctive normal form to disjunctive normal form ?

(P.T.O.)

Unit II

- 12. (a) Define cut vertex and cut edge in a graph. Give one example for each.
 - (b) Can you draw a graph with an odd number of vertices in which all vertices are of odd degree ? Give reason.
- 13. (a) Describe the method of finding a spanning tree for a connected graph.
 - (b) Explain a real life application of graph theory.
- 14. (a) State and prove Euler's formula.
 - (b) Describe a method to check a graph to be Eulerian. Illustrate it with an example.

Unit III

- 15. (a) What is concatenation of strings? How is it useful in a formal language?
 - (b) Explain with an example the method of getting a grammar using productions.
- 16. (a) Differentiate between deterministic and non-deterministic finite automata.(b) Give one example for each of these two types of automata.
- 17. (a) Show that $\{aab\}$ is a language on an alphabet $\Sigma = \{a, b\}$. Get an *nfa* accepting this language.
 - (b) Obtain a dfa accepting the language $\{abb\}$ on an alphabet $\Sigma = \{a, b\}$

 $(6 \ge 2 = 12 \text{ Weightage})$

Part C

Answer any two questions. Each carries 5 weightage

- 18. (a) Define a partial order relation. Give example of one such relation on the set of all positive integers less than 100. Verify it to be a partial order.
 - (b) Prove that every finite Boolean algebra is isomorphic to a power set Boolean algebra.
- 19. (a) Define a planar graph. State and prove a characterisation theorem for planar graphs.
 - (b) Describe the Konigsberg bridge problem. How do you relate this problem with a topic in graph theory ?
- 20. (a) State and prove a characterisation theorem for a graph to be bipartite.
 - (b) Prove that a simple graph is planar if it does not contain K_5 or $K_{3,3}$.
- 21. (a) Explain the procedure of generating a language from a dfa.
 - (b) Is it possible to obtain the same language using a dfa and an nfa? Explain with an example.

 $(2 \ge 5 = 10 \text{ Weightage})$