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Part A
Answer all questions. Each carries 1 weightage.

. Define countable set. Show that every infinite subset of a countable set A is count-

able.

. Prove or disprove: Let {G,}22, be an infinite collection of open sets,

then G = N2, G, is open.

Define discontinuity of second kind. Give example of a function that has a discon-
tinuity of second kind.

Show that if f is differentiable at = € (a, b) then f is continuous at x. Whether the
converse is true? Justify.

Show that if f is differentiable on [a, b], then f’ cannot have any simple discontinuity
on [a,b].

Show that if f is continuous on [a, b], then f € R(a) on [a, b].

Prove that if f maps [a, b] into R* and if f € R(«) for some monotonically increasing
function a on [a, b], then |f| € R(a) and |f; fda| < f; | flda.

State whether every convergent sequence of functions contains a uniformly conver-
gent sub-sequence. Justify.

(8 x 1 = 8 Weightage)

Part B
Answer any two questions from each unit.
Each carries 2 weightage.

Unit I

Prove that a finite point set has no limit points.

Prove that a mapping f of a metric space X into metric space Y is continuous on
X if and only if f71(C) is closed in X for every closed set C in Y.

Show that monotonic functions have no discontinuities of second kind.
(P.T.0O.)
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Unit II

State and prove generalized mean value theorem.

Suppose f is a continuous mapping of [a, b] onto R* and f is differentiable in (a, b).
Show that there exists an « € (a,b) such that |f(b) — f(a)| < (b—a)|f'(x)].

Let f be monotonic on [a,b] and « is monotonic and continuous on [a,b]. Show
that f € R(«).

Unit III

State and prove Cauchy criterion for uniform convergence of functions.
Show that if 4’ is continuous on [a, b], then ~ is rectifiable and A(vy f |7/ (t)]|dt.

Show that if { f,,} is a sequence of continuous function on E and if f,, — f uniformly
on F, then f is continuous on F.

(6 x 2 = 12 Weightage)

Part C
Answer any two questions. Each carries 5 weightage

(a) Define uniformly continuous functions. Give example.

(b) Show that if f is a continuous mapping of a compact metric space X into
metric space Y. Then f is uniformly continuous on X.

(a) Define Riemann-Stieltjes integral. Give example of a Riemann-Stieltjes inte-
grable function.

(b) Suppose « increases monotonically and o/ € R on [a,b]. Let f be a bounded
real function on [a,b]. Then show that f € R(«a) if and only if fo/ € R and

fab fdo = f: f(z)d (x)dx

(a) Let f € R on [a,b]. For a <z <b. Define F(z) = [ f(t)dt. Then show that
F' is continuous on [a,b]. And if f is contlnuous at xy € [a,b] then show that
F is differentiable at z¢ and F'(zq) = f(x0)-

(b) Show that if f € R on |a, b] and if there is a differentiable function F' on [a, ]
such that I’ = f, then f f(x)dz = F(b) — F(a).
(a) Show that there exists a nowhere continuous function.

(b) Show that there exists a continuous function on the real line which is nowhere
differentiable.

(2 x 5 = 10 Weightage )



