D1AMT2103

Reg.	No		 	
Nam	e: .	••••	 	

FIRST SEMESTER M. Sc. DEGREE EXAMINATION, NOVEMBER 2021 (Regular/Improvement/Supplementary) MATHEMATICS FMTH1C03 - REAL ANALYSIS I

Time: Three Hours

Max. Weightage : 30

Part A

Answer all questions. Each carries 1 weightage.

- 1. Define countable set. Show that every infinite subset of a countable set A is countable.
- 2. Prove or disprove: Let $\{G_n\}_{n=1}^{\infty}$ be an infinite collection of open sets, then $G = \bigcap_{n=1}^{\infty} G_n$ is open.
- 3. Define discontinuity of second kind. Give example of a function that has a discontinuity of second kind.
- 4. Show that if f is differentiable at $x \in (a, b)$ then f is continuous at x. Whether the converse is true? Justify.
- 5. Show that if f is differentiable on [a, b], then f' cannot have any simple discontinuity on [a, b].
- 6. Show that if f is continuous on [a, b], then $f \in \mathcal{R}(\alpha)$ on [a, b].
- 7. Prove that if f maps [a, b] into \mathbb{R}^k and if $f \in \mathcal{R}(\alpha)$ for some monotonically increasing function α on [a, b], then $|f| \in \mathcal{R}(\alpha)$ and $|\int_a^b f d\alpha| \leq \int_a^b |f| d\alpha$.
- 8. State whether every convergent sequence of functions contains a uniformly convergent sub-sequence. Justify.

 $(8 \ge 1 = 8 \text{ Weightage})$

Part B Answer any **two** questions from each unit.

Each carries 2 weightage.

Unit I

- 9. Prove that a finite point set has no limit points.
- 10. Prove that a mapping f of a metric space X into metric space Y is continuous on X if and only if $f^{-1}(C)$ is closed in X for every closed set C in Y.
- 11. Show that monotonic functions have no discontinuities of second kind.

(P.T.O.)

Unit II

- 12. State and prove generalized mean value theorem.
- 13. Suppose f is a continuous mapping of [a, b] onto \mathbb{R}^k and f is differentiable in (a, b). Show that there exists an $x \in (a, b)$ such that $|f(b) - f(a)| \leq (b - a)|f'(x)|$.
- 14. Let f be monotonic on [a, b] and α is monotonic and continuous on [a, b]. Show that $f \in \mathcal{R}(\alpha)$.

Unit III

- 15. State and prove Cauchy criterion for uniform convergence of functions.
- 16. Show that if γ' is continuous on [a, b], then γ is rectifiable and $\Lambda(\gamma) = \int_a^b |\gamma'(t)| dt$.
- 17. Show that if $\{f_n\}$ is a sequence of continuous function on E and if $f_n \to f$ uniformly on E, then f is continuous on E.

 $(6 \ge 2 = 12 \text{ Weightage})$

Part C

Answer any **two** questions. Each carries 5 weightage

- 18. (a) Define uniformly continuous functions. Give example.
 - (b) Show that if f is a continuous mapping of a compact metric space X into metric space Y. Then f is uniformly continuous on X.
- 19. (a) Define Riemann-Stieltjes integral. Give example of a Riemann-Stieltjes integrable function.
 - (b) Suppose α increases monotonically and $\alpha' \in \mathcal{R}$ on [a, b]. Let f be a bounded real function on [a, b]. Then show that $f \in \mathcal{R}(\alpha)$ if and only if $f\alpha' \in \mathcal{R}$ and $\int_a^b f d\alpha = \int_a^b f(x)\alpha'(x)dx$.
- 20. (a) Let $f \in \mathcal{R}$ on [a, b]. For $a \leq x \leq b$. Define $F(x) = \int_a^x f(t)dt$. Then show that F is continuous on [a, b]. And if f is continuous at $x_0 \in [a, b]$ then show that F is differentiable at x_0 and $F'(x_0) = f(x_0)$.
 - (b) Show that if $f \in \mathcal{R}$ on [a, b] and if there is a differentiable function F on [a, b] such that F' = f, then $\int_a^b f(x) dx = F(b) F(a)$.
- 21. (a) Show that there exists a nowhere continuous function.
 - (b) Show that there exists a continuous function on the real line which is nowhere differentiable.

 $(2 \ge 5 = 10 \text{ Weightage})$